Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(4)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36838698

RESUMO

We investigate the combined effects of surface diffraction and total internal reflection (TIR) in the design of 3-dimensional materials exhibiting distinct structural colour on various facets. We employ mechanical wrinkling to introduce surface diffraction gratings (from the nano to the micron scales) on one face of an elastomeric rectangular parallelepiped-shaped slab and explore the roles, in the perceived colours, of wrinkling pattern, wavelength, the directionality of incident light and observation angles. We propose a simple model that satisfactorily accounts for all experimental observations. Employing polydimethylsiloxane (PDMS), which readily swells in the presence of various liquids and gases, we demonstrate that such multifaceted colours can respond to their environment. By coupling a right angle triangular prism with a surface grating, we demonstrate the straightforward fabrication of a so-called GRISM (GRating + prISM). Finally, using a range of examples, we outline possibilities for a predictive material design using multi-axial wrinkling patterns and more complex polyhedra.


Assuntos
Gases , Elasticidade
2.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34140412

RESUMO

Biological systems have a remarkable capability of synthesizing multifunctional materials that are adapted for specific physiological and ecological needs. When exploring structure-function relationships related to multifunctionality in nature, it can be a challenging task to address performance synergies, trade-offs, and the relative importance of different functions in biological materials, which, in turn, can hinder our ability to successfully develop their synthetic bioinspired counterparts. Here, we investigate such relationships between the mechanical and optical properties in a multifunctional biological material found in the highly protective yet conspicuously colored exoskeleton of the flower beetle, Torynorrhina flammea Combining experimental, computational, and theoretical approaches, we demonstrate that a micropillar-reinforced photonic multilayer in the beetle's exoskeleton simultaneously enhances mechanical robustness and optical appearance, giving rise to optical damage tolerance. Compared with plain multilayer structures, stiffer vertical micropillars increase stiffness and elastic recovery, restrain the formation of shear bands, and enhance delamination resistance. The micropillars also scatter the reflected light at larger polar angles, enhancing the first optical diffraction order, which makes the reflected color visible from a wider range of viewing angles. The synergistic effect of the improved angular reflectivity and damage localization capability contributes to the optical damage tolerance. Our systematic structural analysis of T. flammea's different color polymorphs and parametric optical and mechanical modeling further suggest that the beetle's microarchitecture is optimized toward maximizing the first-order optical diffraction rather than its mechanical stiffness. These findings shed light on material-level design strategies utilized in biological systems for achieving multifunctionality and could thus inform bioinspired material innovations.


Assuntos
Exoesqueleto/anatomia & histologia , Exoesqueleto/fisiologia , Besouros/anatomia & histologia , Besouros/fisiologia , Flores/parasitologia , Fenômenos Ópticos , Animais , Fenômenos Biomecânicos , Modelos Biológicos , Fótons , Pigmentação , Espalhamento de Radiação
3.
Faraday Discuss ; 223: 9-48, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33000817

RESUMO

Photonic structures in ordered, quasi-ordered or disordered forms have evolved across many different animal and plant systems. They can produce complex and often functional optical responses through coherent and incoherent scattering processes, often too, in combination with broadband or narrowband absorbing pigmentation. Interestingly, these systems appear highly tolerant of faults in their photonic structures, with imperfections in their structural order appearing not to impact, discernibly, the systems' optical signatures. The extent to which any such biological system deviates from presenting perfect structural order can dictate the optical properties of that system and, thereby, the optical properties that system delivers. However, the nature and extent of the optical costs and benefits of imperfect order in biological systems demands further elucidation. Here, we identify the extent to which biological photonic systems are tolerant of defects and imperfections. Certainly, it is clear that often significant inherent variations in the photonic structures of these systems, for instance a relatively broad distribution of lattice constants, can consistently produce what appear to be effective visual appearances and optical performances. In this article, we review previously investigated biological photonic systems that present ordered, quasi-ordered or disordered structures. We discuss the form and nature of the optical behaviour of these structures, focusing particularly on the associated optical costs and benefits surrounding the extent to which their structures deviate from what might be considered ideal systems. Then, through detailed analyses of some well-known 1D and 2D structurally coloured systems, we analyse one of the common manifestations of imperfect order, namely, the extent and nature of positional disorder in the systems' spatial distribution of layers and scattering centres. We use these findings to inform optical modelling that presents a quantitative and qualitative description of the optical costs and benefits of such positional disorder among ordered and quasi-ordered 1D and 2D photonic systems. As deviation from perfectly ordered structures invariably limits the performance of technology-oriented synthetic photonic processes, we suggest that the use of bio-inspired fault tolerance principles would add value to applied photonic technologies.


Assuntos
Fótons , Cristalização , Óptica e Fotônica , Espalhamento de Radiação
6.
Sci Data ; 7(1): 163, 2020 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-32472045

RESUMO

High resolution X-ray nano-tomography experiments are often limited to a few tens of micrometer size volumes due to detector size. It is possible, through the use of multiple overlapping tomography scans, to produce a large area scan which can encompass a sample in its entirety. Mounting and positioning regions to be scanned is highly challenging and normally requires focused ion beam approaches. In this work we have imaged intact beetle scale cells mounted on the tip of a needle using a micromanipulator stage. Here we show X-ray holotomography data for single ultra-white scales from the beetles Lepidiota stigma (L. stigma) and Cyphochilus which exhibit the most effective scattering of white light in the literature. The final thresholded matrices represent a scan area of 25 × 70 × 362.5 µm and 25 × 67.5 × 235µm while maintaining a pixel resolution of 25 nm. This tomographic approach allowed the internal structure of the scales to be captured completely intact and undistorted by the sectioning required for traditional microscopy techniques.


Assuntos
Exoesqueleto/ultraestrutura , Besouros/ultraestrutura , Imageamento Tridimensional/métodos , Tomografia Computadorizada por Raios X , Animais
7.
J Biophotonics ; 12(9): e201800470, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31134739

RESUMO

The wings of some insect species are known to fluoresce under illumination by ultraviolet light. Their fluorescence properties are however, not comprehensively documented. In this article, the optical properties of one specific insect, the Trictenotoma childreni yellow longhorn beetle, were investigated using both linear and nonlinear optical (NLO) methods, including one- and two-photon fluorescence and second harmonic generation (SHG). These three distinct optical signals discovered in this beetle are attributed to the presence of fluorophores embedded within the scales covering their elytra. Experimental evidence collected in this study indicates that the fluorophores are non-centrosymmetric, a fundamental requirement for SHG. This study is the first reported optical behavior of this type in insects. We described how NLO techniques can complement other more convenient approaches to achieve a more comprehensive understanding of insect scales and integument properties.


Assuntos
Besouros/fisiologia , Imagem Óptica , Asas de Animais/fisiologia , Animais , Cor , Feminino , Corantes Fluorescentes , Processamento de Imagem Assistida por Computador , Luz , Masculino , Microscopia de Fluorescência , Dinâmica não Linear , Fótons , Espectrometria de Fluorescência , Espectrofotometria , Espectrofotometria Ultravioleta , Asas de Animais/diagnóstico por imagem
8.
Interface Focus ; 9(1): 20180052, 2019 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-30603071

RESUMO

Upon illumination by ultraviolet light, many animal species emit light through fluorescence processes arising from fluorophores embedded within their biological tissues. Fluorescence studies in living organisms are however relatively scarce and so far limited to the linear regime. Multiphoton excitation fluorescence analyses as well as nonlinear optical techniques offer unique possibilities to investigate the effects of the local environment on the excited states of fluorophores. Herein, these techniques are applied for the first time to study of the naturally controlled fluorescence in insects. The case of the male Hoplia coerulea beetle is investigated because the scales covering the beetle's elytra are known to possess an internal photonic structure with embedded fluorophores, which controls both the beetle's coloration and the fluorescence emission. An intense two-photon excitation fluorescence signal is observed, the intensity of which changes upon contact with water. A third-harmonic generation signal is also detected, the intensity of which depends on the light polarization state. The analysis of these nonlinear optical and fluorescent responses unveils the multi-excited states character of the fluorophore molecules embedded in the beetle's elytra. The role of form anisotropy in the photonic structure, which causes additional tailoring of the beetle's optical responses, is demonstrated by circularly polarized light and nonlinear optical measurements.

9.
J R Soc Interface ; 15(141)2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29669892

RESUMO

Iridescence is an optical phenomenon whereby colour changes with the illumination and viewing angle. It can be produced by thin film interference or diffraction. Iridescent optical structures are fairly common in nature, but relatively little is known about their production or evolution. Here we describe the structures responsible for producing blue-green iridescent colour in Heliconius butterflies. Overall the wing scale structures of iridescent and non-iridescent Heliconius species are very similar, both having longitudinal ridges joined by cross-ribs. However, iridescent scales have ridges composed of layered lamellae, which act as multilayer reflectors. Differences in brightness between species can be explained by the extent of overlap of the lamellae and their curvature as well as the density of ridges on the scale. Heliconius are well known for their Müllerian mimicry. We find that iridescent structural colour is not closely matched between co-mimetic species. Differences appear less pronounced in models of Heliconius vision than models of avian vision, suggesting that they are not driven by selection to avoid heterospecific courtship by co-mimics. Ridge profiles appear to evolve relatively slowly, being similar between closely related taxa, while ridge density evolves faster and is similar between distantly related co-mimics.


Assuntos
Borboletas/ultraestrutura , Iridescência , Asas de Animais/ultraestrutura , Animais , Evolução Biológica , Borboletas/anatomia & histologia , Borboletas/genética , Cor , Genótipo , Microscopia Eletrônica de Varredura , Filogenia , Espalhamento a Baixo Ângulo , Análise Espectral
10.
J R Soc Interface ; 14(131)2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28615493

RESUMO

The evolution of structural colour mechanisms in biological systems has given rise to many interesting optical effects in animals and plants. The instance of the scarab beetle Chrysina resplendens is particularly distinctive. Its exoskeleton has a bright, golden appearance and reflects both right-handed and left-handed circularly polarized light concurrently. The chiral nanostructure responsible for these properties is a helicoid, in which birefringent dielectric planes are assembled with an incremental rotation. This study correlates details of the beetle's circularly polarized reflectance spectra directly with physical aspects of its structural morphology. Electron micrography is used to identify and measure the physical dimensions of the key constituent components. These include a chiral multilayer configuration comprising two chirped, left-handed helicoids that are separated by a birefringent retarder. A scattering matrix technique is used to simulate the system's optical behaviour in which the roles of each component of the morphological substructure are elucidated by calculation of the fields throughout its depth.


Assuntos
Besouros/fisiologia , Tegumento Comum/fisiologia , Animais , Birrefringência , Luz , Polarografia , Propriedades de Superfície
11.
Interface Focus ; 7(4): 20160129, 2017 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-28630672

RESUMO

Helicoidal architectures comprising various polysaccharides, such as chitin and cellulose, have been reported in biological systems. In some cases, these architectures exhibit stunning optical properties analogous to ordered cholesteric liquid crystal phases. In this work, we characterize the circularly polarized reflectance and optical scattering from the cuticle of the beetle Chalcothea smaragdina (Coleoptera: Scarabaeidae: Cetoniinae) using optical experiments, simulations and structural analysis. The selective reflection of left-handed circularly polarized light is attributed to a Bouligand-type helicoidal morphology within the beetle's exocuticle. Using electron microscopy to inform electromagnetic simulations of this anisotropic stratified medium, the inextricable connection between the colour appearance of C. smaragdina and the periodicity of its helicoidal rotation is shown. A close agreement between the model and the measured reflectance spectra is obtained. In addition, the elytral surface of C. smaragdina possesses a blazed diffraction grating-like surface structure, which affects the diffuse appearance of the beetle's reflected colour, and therefore potentially enhances crypsis among the dense foliage of its rainforest habitat.

12.
Opt Express ; 24(11): 12267-80, 2016 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-27410142

RESUMO

Photonic structures encased by a permeable envelope give rise to iridescent blue color in the scales covering the male Hoplia coerulea beetle. This structure comprises a periodic porous multilayer. The color of these scales is known for changing from blue to green upon contact with water despite the presence of the envelope. This optical system has been referred to as a photonic cell due to the role of the envelope that mediates fluid exchanges with the surrounding environment. Following from previously studied liquid-induced changes in the color appearance of H. coerulea, we measured vapor-induced color changes in its appearance. This response to vapor exposure was marked by reflectance redshift and an increase in peak reflectance intensity. Different physico-chemical processes were investigated to explain the increase in reflectance intensity, a property not usually associated with vapor-induced optical signature changes. These simulations indicated the optical response arose from physisorption of a liquid film on the beetle scales followed by liquid penetration through the envelope and the filling of micropores within the body of the photonic structure.


Assuntos
Óptica e Fotônica , Volatilização , Animais , Besouros , Cor , Gases , Masculino
13.
Opt Express ; 23(8): 10198-212, 2015 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-25969062

RESUMO

Iridescent structural colors in biology exhibit sophisticated spatially-varying reflectance properties that depend on both the illumination and viewing angles. The classification of such spectral and spatial information in iridescent structurally colored surfaces is important to elucidate the functional role of irregularity and to improve understanding of color pattern formation at different length scales. In this study, we propose a non-invasive method for the spectral classification of spatial reflectance patterns at the micron scale based on the multispectral imaging technique and the principal component analysis similarity factor (PCASF). We demonstrate the effectiveness of this approach and its component methods by detailing its use in the study of the angle-dependent reflectance properties of Pavo cristatus (the common peacock) feathers, a species of peafowl very well known to exhibit bright and saturated iridescent colors. We show that multispectral reflectance imaging and PCASF approaches can be used as effective tools for spectral recognition of iridescent patterns in the visible spectrum and provide meaningful information for spectral classification of the irregularity of the microstructure in iridescent plumage.

14.
J R Soc Interface ; 12(105)2015 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-25788537

RESUMO

A range of iridescent colour appearances are presented by male Swinhoe's pheasants' (Lophura swinhoii) mantle feathers. Two distinct regions of the open pennaceous portion of its feathers display particularly conspicuous angle-dependent reflection. A bright blue band appears in one region at normal incidence that spatially shifts to another at higher illumination angles. The two-dimensional photonic crystal-like nanostructures inside the barbules of these two regions are similar. However, this study found that the spatial variation in their colour appearance results from a continuously changing orientation of barbules with respect to the alignment of their associated barb. A multi-layered rigorous coupled-wave analysis approach was used to model the reflections from the identified intra-barbule structures. Well-matched simulated and measured reflectance spectra, at both normal and oblique incidence, support our elucidation of the origin of the bird's distinctive feather colour appearance.


Assuntos
Cor , Plumas/anatomia & histologia , Galliformes/anatomia & histologia , Modelos Teóricos , Fenômenos Ópticos , Animais , Masculino , Análise Espectral
15.
Nanoscale Res Lett ; 6(1): 369, 2011 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-21711872

RESUMO

In this article, we report a hyperspectral optical imaging application for measurement of the reflectance spectra of photonic structures that produce structural colors with high spatial resolution. The measurement of the spectral reflectance function is exemplified in the butterfly wings of two different species of Lepidoptera: the blue iridescence reflected by the nymphalid Morpho didius and the green iridescence of the papilionid Papilio palinurus. Color coordinates from reflectance spectra were calculated taking into account human spectral sensitivity. For each butterfly wing, the observed color is described by a characteristic color map in the chromaticity diagram and spreads over a limited volume in the color space. The results suggest that variability in the reflectance spectra is correlated with different random arrangements in the spatial distribution of the scales that cover the wing membranes. Hyperspectral optical imaging opens new ways for the non-invasive study and classification of different forms of irregularity in structural colors.

16.
Curr Biol ; 21(5): R187-9, 2011 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-21377094

RESUMO

Understanding structural colours in nature requires the right set of optical experiments: this is illustrated by a new study on iridescent bird of paradise feathers, which suggests the potential behavioural importance of dynamic colour changes.


Assuntos
Comunicação Animal , Cor , Plumas/ultraestrutura , Óptica e Fotônica/instrumentação , Passeriformes/anatomia & histologia , Animais , Óptica e Fotônica/métodos
17.
Ophthalmic Physiol Opt ; 30(5): 435-45, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20883326

RESUMO

The surfaces of animals and plants are frequently adorned with a wealth of pattern, colour, and texture. Some insects for example, exhibit uniformly-coloured unpatterned white surfaces; some display bright iridescent blue or green hues; others may present varying shades of black, brown or selected combinations of spectral colours. Additionally, unseen by human observers, certain species' wing or body surfaces may produce strong ultra-violet or polarisation signatures. This review will introduce the characteristics of structural colour effects and describe examples of them in the natural world. It will summarise some of the recent work on a range of insect species, focussing predominantly on Lepidoptera as an exemplar order.


Assuntos
Insetos/anatomia & histologia , Pigmentação , Animais , Visão de Cores , Lepidópteros/anatomia & histologia , Nanoestruturas , Propriedades de Superfície , Asas de Animais/anatomia & histologia
18.
Nat Nanotechnol ; 5(7): 511-5, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20512131

RESUMO

The brightest and most vivid colours in nature arise from the interaction of light with surfaces that exhibit periodic structure on the micro- and nanoscale. In the wings of butterflies, for example, a combination of multilayer interference, optical gratings, photonic crystals and other optical structures gives rise to complex colour mixing. Although the physics of structural colours is well understood, it remains a challenge to create artificial replicas of natural photonic structures. Here we use a combination of layer deposition techniques, including colloidal self-assembly, sputtering and atomic layer deposition, to fabricate photonic structures that mimic the colour mixing effect found on the wings of the Indonesian butterfly Papilio blumei. We also show that a conceptual variation to the natural structure leads to enhanced optical properties. Our approach offers improved efficiency, versatility and scalability compared with previous approaches.


Assuntos
Borboletas/anatomia & histologia , Nanoestruturas/química , Óptica e Fotônica , Pigmentação/fisiologia , Asas de Animais/anatomia & histologia , Animais , Biomimética , Metais/química , Microscopia Eletrônica de Varredura , Nanoestruturas/ultraestrutura , Nanotecnologia , Poliestirenos/química , Refratometria
20.
Science ; 315(5810): 348, 2007 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-17234940

RESUMO

The colored appearances of animals are controlled by pigmentation, highly periodic ultrastructure, or a combination of both. Whiteness, however, is less common and is generated by neither of these, because it requires scattering processes appropriate for all visible wavelengths. We report whiteness resulting from a three-dimensional photonic solid in the scales of Cyphochilus spp. beetles. Their scales are characterized by their exceptional whiteness, their perceived brightness, and their optical brilliance, but they are only 5 micrometers thick. This thickness is at least two orders of magnitude thinner than common synthetic systems designed for equivalent-quality whiteness.


Assuntos
Besouros/ultraestrutura , Cor , Animais , Análise de Fourier , Lasers , Luz , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Óptica e Fotônica , Espalhamento de Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA