Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Transl Med ; 22(1): 524, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38822345

RESUMO

BACKGROUND: Olfactory neuroblastoma is a rare malignancy of the anterior skull base typically treated with surgery and adjuvant radiation. Although outcomes are fair for low-grade disease, patients with high-grade, recurrent, or metastatic disease oftentimes respond poorly to standard treatment methods. We hypothesized that an in-depth evaluation of the olfactory neuroblastoma tumor immune microenvironment would identify mechanisms of immune evasion in high-grade olfactory neuroblastoma as well as rational targetable mechanisms for future translational immunotherapeutic approaches. METHODS: Multispectral immunofluorescence and RNAScope evaluation of the tumor immune microenvironment was performed on forty-seven clinically annotated olfactory neuroblastoma samples. A retrospective chart review was performed and clinical correlations assessed. RESULTS: A significant T cell infiltration was noted in olfactory neuroblastoma samples with a stromal predilection, presence of myeloid-derived suppressor cells, and sparse natural killer cells. A striking decrease was observed in MHC-I expression in high-grade olfactory neuroblastoma compared to low-grade disease, representing a mechanism of immune evasion in high-grade disease. Mechanistically, the immune effector stromal predilection appears driven by low tumor cell MHC class II (HLA-DR), CXCL9, and CXCL10 expression as those tumors with increased tumor cell expression of each of these mediators correlated with significant increases in T cell infiltration. CONCLUSION: These data suggest that immunotherapeutic strategies that augment tumor cell expression of MHC class II, CXCL9, and CXCL10 may improve parenchymal trafficking of immune effector cells in olfactory neuroblastoma and augment immunotherapeutic responses.


Assuntos
Quimiocina CXCL10 , Quimiocina CXCL9 , Estesioneuroblastoma Olfatório , Antígenos HLA-DR , Imunoterapia , Microambiente Tumoral , Humanos , Estesioneuroblastoma Olfatório/terapia , Estesioneuroblastoma Olfatório/patologia , Estesioneuroblastoma Olfatório/imunologia , Quimiocina CXCL10/metabolismo , Imunoterapia/métodos , Feminino , Masculino , Pessoa de Meia-Idade , Quimiocina CXCL9/metabolismo , Microambiente Tumoral/imunologia , Antígenos HLA-DR/metabolismo , Idoso , Neoplasias Nasais/terapia , Neoplasias Nasais/patologia , Neoplasias Nasais/imunologia , Adulto , Regulação Neoplásica da Expressão Gênica
2.
Mol Cancer Ther ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38657228

RESUMO

Disruption of DNA damage repair via impaired homologous recombination is characteristic of Ewing sarcoma (EWS) cells. We hypothesize that this disruption results in increased reliance on non-homologous end joining (NHEJ) to repair DNA damage. In this study, we investigated if pharmacological inhibition of the enzyme responsible for NHEJ, the DNA-PK holoenzyme, alters the response of EWS cells to genotoxic standard of care chemotherapy. We used analyses of cell viability and proliferation to investigate the effects of clinical DNA-PK inhibitors (DNA-PKi) in combination with six therapeutic or experimental agents for EWS. We performed calculations of synergy using the Loewe Additivity Model. Immunoblotting evaluated treatment effects on DNA-PK, DNA damage, and apoptosis. Flow cytometric analyses evaluated effects on cell cycle and fate. We used orthotopic xenograft models to interrogate tolerability, drug mechanism, and efficacy in vivo. DNA-PKi demonstrated on-target activity, reducing phosphorylated DNA-PK levels in EWS cells. DNA-PKi sensitized EWS cell lines to agents that function as topoisomerase 2 (TOP2) poisons and enhanced the DNA damage induced by TOP2 poisons. Nanomolar concentrations of single agent TOP2 poisons induced G2M arrest and little apoptotic response, while adding DNA-PKi mediated apoptosis. In vivo, the combination of AZD-7648 and etoposide had limited tolerability but resulted in enhanced DNA damage, apoptosis, and EWS tumor shrinkage. The combination of DNA-PKi with standard of care TOP2 poisons in EWS models is synergistic, enhances DNA damage and cell death, and may form the basis of a promising future therapeutic strategy for EWS.

3.
Clin Cancer Res ; 29(21): 4479-4491, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37616468

RESUMO

PURPOSE: Deregulated metabolism in cancer cells represents a vulnerability that may be therapeutically exploited to benefit patients. One such target is nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme in the NAD+ salvage pathway. NAMPT is necessary for efficient NAD+ production and may be exploited in cells with increased metabolic demands. We have identified NAMPT as a dependency in rhabdomyosarcoma (RMS), a malignancy for which novel therapies are critically needed. Here we describe the effect of NAMPT inhibition on RMS proliferation and metabolism in vitro and in vivo. EXPERIMENTAL DESIGN: Assays of proliferation and cell death were used to determine the effects of pharmacologic NAMPT inhibition in a panel of ten molecularly diverse RMS cell lines. Mechanism of the clinical NAMPTi OT-82 was determined using measures of NAD+ and downstream NAD+-dependent functions, including energy metabolism. We used orthotopic xenograft models to examine tolerability, efficacy, and drug mechanism in vivo. RESULTS: Across all ten RMS cell lines, OT-82 depleted NAD+ and inhibited cell growth at concentrations ≤1 nmol/L. Significant impairment of glycolysis was a universal finding, with some cell lines also exhibiting diminished oxidative phosphorylation. Most cell lines experienced profound depletion of ATP with subsequent irreversible necrotic cell death. Importantly, loss of NAD and glycolytic activity were confirmed in orthotopic in vivo models, which exhibited complete tumor regressions with OT-82 treatment delivered on the clinical schedule. CONCLUSIONS: RMS is highly vulnerable to NAMPT inhibition. These findings underscore the need for further clinical study of this class of agents for this malignancy.


Assuntos
NAD , Rabdomiossarcoma , Humanos , NAD/metabolismo , Citocinas/metabolismo , Nicotinamida Fosforribosiltransferase/metabolismo , Pirazóis , Necrose , Rabdomiossarcoma/tratamento farmacológico , Linhagem Celular Tumoral
4.
Vet Microbiol ; 283: 109793, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37276814

RESUMO

Amongst the bacterial pathogens associated with the bovine respiratory disease syndrome (BRD) in cattle are Mannheimia haemolytica and Mycoplasma bovis. The interaction between these two pathogens has not been investigated before; thus, there are gaps in the knowledge of why and how a previous infection with M. haemolytica allows the development of M. bovis-related lesions. We hypothesized that upon M. haemolytica infection, inflammatory products are produced in the lung and that these inflammatory products stimulate M. bovis to produce proteases and lipases that degrade lipids and proteins important for lung function. In this work, we identified several M. bovis proteases and lipases whose expression was modulated by M. haemolytica products in vitro. We performed co-infection animal challenges to develop a model to test vaccine protection. A prior exposure to BHV-1 followed by infection with M. bovis and M. haemolytica resulted in severe pathology and the BHV-1 infection was abandoned. When M. bovis and M. haemolytica were introduced into the lungs by bronchoscopy, we found that M. haemolytica resulted in worsening of the respiratory disease caused by M. bovis. We performed a proof-of-concept trial where animals were immunized with the M. bovis proteins identified in this study and challenged with both pathogens. Despite detecting significant humoral immune responses to the antigens, the experimental vaccine failed to protect against M. bovis disease.


Assuntos
Doenças dos Bovinos , Mannheimia haemolytica , Mycoplasma bovis , Doenças Respiratórias , Animais , Bovinos , Bactérias , Doenças dos Bovinos/microbiologia , Doenças Respiratórias/veterinária , Estudo de Prova de Conceito
5.
Can J Vet Res ; 86(2): 85-92, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35388233

RESUMO

Bovine respiratory disease (BRD) often occurs during specific periods of increased susceptibility when stress, viral infection, or reduced air quality are thought to suppress respiratory defences. The innate immune system is rapidly responsive and broadly protective and could be a target for preventing BRD during these periods of increased susceptibility. This study tested the hypothesis that stimulation of pulmonary innate immune responses by aerosol delivery of a lysate of killed Escherichia coli and Staphylococcus aureus bacteria would protect calves against Mannheimia haemolytica pneumonia. Ten clean-catch colostrum-deprived Holstein calves were randomly assigned to receive either aerosolized bacterial lysate or saline 24 hours before M. haemolytica challenge. Effects of this treatment on clinical, hematologic, microbiologic, and pathologic outcomes were assessed. Compared to controls, lysate-treated calves had lower serum haptoglobin and blood leukocyte and neutrophil concentrations following M. haemolytica challenge. There were no differences in temperature, heart and respiratory rates, clinical scores, ultrasound lesions, or number of M. haemolytica in the nasal cavity or lung. Thus, treatment with bacterial lysate prior to M. haemolytica challenge appeared to ameliorate early measures of inflammation but did not provide sufficient protection to substantially alter the course of disease.


La maladie respiratoire bovine (BRD) survient souvent pendant des périodes spécifiques de sensibilité accrue lorsque le stress, une infection virale ou une qualité de l'air réduite sont censés supprimer les défenses respiratoires. Le système immunitaire inné est rapidement réactif et largement protecteur et pourrait être une cible pour prévenir la BRD pendant ces périodes de sensibilité accrue. Cette étude a testé l'hypothèse selon laquelle la stimulation des réponses immunitaires innées pulmonaires par la délivrance d'aérosols d'un lysat de bactéries Escherichia coli et Staphylococcus aureus tuées protégerait les veaux contre la pneumonie à Mannheimia haemolytica. Dix veaux Holstein dont on a limité la contamination bactérienne et privés de colostrum ont été répartis au hasard pour recevoir soit un lysat bactérien en aérosol, soit une solution saline 24 heures avant une infection défi par M. haemolytica. Les effets de ce traitement sur les résultats cliniques, hématologiques, microbiologiques et pathologiques ont été évalués. Comparativement aux témoins, les veaux traités au lysat présentaient des concentrations sériques d'haptoglobine et de leucocytes et de neutrophiles sanguins plus faibles après la provocation par M. haemolytica. Il n'y avait aucune différence dans la température, les fréquences cardiaques et respiratoires, les scores cliniques, les lésions échographiques ou le nombre de M. haemolytica dans la cavité nasale ou les poumons. Ainsi, le traitement avec un lysat bactérien avant la provocation par M. haemolytica a semblé améliorer les réactions précoces de l'inflammation mais n'a pas fourni une protection suffisante pour modifier substantiellement l'évolution de la maladie.(Traduit par Docteur Serge Messier).


Assuntos
Doenças dos Bovinos , Mannheimia haemolytica , Pneumonia , Animais , Bovinos , Doenças dos Bovinos/tratamento farmacológico , Doenças dos Bovinos/microbiologia , Doenças dos Bovinos/prevenção & controle , Extratos Celulares/farmacologia , Pneumonia/veterinária
6.
Vet Microbiol ; 262: 109235, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34530231

RESUMO

Inflammation in the respiratory tract is thought to worsen the disease response to Mycoplasma bovis infection. This study investigated the cells involved in this response with a focus on proteases and cytokines as harmful effector mechanisms. By immunohistochemistry, Mac387-positive macrophages were the main cell type comprising the foci of caseous necrosis in cattle with M. bovis pneumonia. Thus, the study evaluated how priming of different types of macrophages with bacterial lysate (or pro-inflammatory cytokines induced by the bacterial lysate) affected their responses to M. bovis infection. Inducible responses were detected in monocyte-derived macrophages (M1-MDMs and M2-MDMs), whereas pulmonary alveolar macrophages (PAMs) were minimally affected by priming or infection. M. bovis-infected MDMs secreted MMP-12 and SPLA2, and priming with pro-inflammatory cytokines increased the secretion of cathepsin B in response to M. bovis infection. Of these, there were higher concentrations of cathepsin B and SPLA2 in lungs with M. bovis pneumonia compared to healthy lungs, and these are potential mechanisms for macrophage-induced lung damage in M. bovis infection. Priming of MDMs with either bacterial lysate or with pro-inflammatory cytokines caused an enhanced response to M. bovis infection with respect to IL-8 and IL-1ß secretion. The findings of this study suggest proteases, lipases and cytokines derived from monocyte-derived macrophages as possible mediators by which prior inflammation in the respiratory tract worsen disease outcomes from M. bovis infection.


Assuntos
Doenças dos Bovinos , Infecções por Mycoplasma , Mycoplasma bovis , Fosfolipases A2 Secretórias , Pneumonia , Animais , Catepsina B/metabolismo , Bovinos , Doenças dos Bovinos/imunologia , Citocinas/imunologia , Inflamação/veterinária , Macrófagos/imunologia , Macrófagos/microbiologia , Infecções por Mycoplasma/imunologia , Infecções por Mycoplasma/microbiologia , Infecções por Mycoplasma/veterinária , Mycoplasma bovis/imunologia , Pneumonia/veterinária
7.
J Vet Intern Med ; 35(1): 655-665, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33442910

RESUMO

BACKGROUND: Bovine respiratory disease (BRD) is a major problem affecting beef cattle after arrival to feedlots. Alternatives to antibiotics are needed for prevention. HYPOTHESIS: Stimulation of pulmonary innate immune responses at the time of arrival to a feedlot reduces the occurrence and severity of BRD. ANIMALS: Sixty beef steers at high risk of BRD. METHODS: Randomized, double-blinded, placebo-controlled study. Calves received saline or a lysate of Staphylococcus aureus and Escherichia coli by aerosol, at 16 hours after feedlot arrival. Calves were monitored for 28 days for disease outcomes and levels of Mycoplasma bovis and Mannheimia haemolytica in nasal swabs. RESULTS: Death from M bovis pneumonia was significantly greater in lysate-treated animals (6/29, 24%) compared to controls (1/29, 3%; odds ratio = 10.2; 95% confidence interval [CI] = 1.1-96.0; P = .04). By 28 days after arrival, 29/29 lysate-treated calves had ultrasonographic pulmonary consolidation compared to 24/29 control calves (P = .05). Lysate-treated calves had lower weight gain compared to control calves (-8.8 kg, 95% CI = -17.1 to -0.5; P = .04), and higher body temperatures on days 4, 7, and 21 (0.19°C; 95% CI = 0.01-0.37; P = .04). Nasal M bovis numbers increased over time and were higher in lysate-treated calves (0.76 log CFU, 95% CI = 0.3-1.2; P = .001). CONCLUSIONS AND CLINICAL IMPORTANCE: Aerosol administration of a bacterial lysate exacerbated BRD in healthy high-risk beef calves, suggesting that respiratory tract inflammation adversely affects how calves respond to subsequent natural infection with M bovis and other respiratory pathogens.


Assuntos
Doenças dos Bovinos , Mannheimia haemolytica , Mycoplasma bovis , Doenças Respiratórias , Animais , Bovinos , Extratos Celulares , Doenças Respiratórias/veterinária
8.
PLoS One ; 14(11): e0225533, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31770402

RESUMO

Bacterial pneumonia causes significant economic loss to the beef industry and occurs at times of stress and viral infection. Administering antibiotics to at-risk calves is often used to prevent the disease, but alternatives to mass treatment with antibiotics are needed. Tracheal antimicrobial peptide (TAP), a ß-defensin naturally produced by bovine airways, has bactericidal activity against the pathogens that cause pneumonia in cattle. However, TAP expression is suppressed by glucocorticoid (stress) and viral infection. We hypothesized that delivering TAP to the respiratory tract would prevent development of pneumonia in calves infected with Mannheimia haemolytica. Clean-catch calves (i.e. obtained prior to contact with the dam) were challenged by aerosol with M. haemolytica, and TAP or water was delivered to the respiratory tract at 0.3, 2 and 6 hours post-infection. TAP treatment did not protect against development of disease. Calves treated with TAP had similar bacterial loads in the nasal cavity and lung compared to calves treated with water. Similarly, TAP treatment did not affect the development of clinical signs, elevated rectal temperatures, or increased levels of blood neutrophils, haptoglobin and fibrinogen that occurred after bacterial challenge. Postmortem gross and histologic lung lesions were also similar in the two groups. To determine why there was a lack of protective effect, we tested the effect of substances in respiratory lining fluid on the bactericidal activity of TAP. Physiologic concentrations of sodium chloride inhibited TAP bactericidal activity in vitro, as did serum at concentrations of 0.62 to 2.5%, but concentrated bronchoalveolar lavage fluid had no consistent effect. These findings suggest that TAP does not have in vivo bactericidal activity against M. haemolytica because of interference by physiological sodium chloride levels and by serum. Thus, administration of TAP may not be effective for prevention of M. haemolytica pneumonia.


Assuntos
Anti-Infecciosos/uso terapêutico , Peptídeos Catiônicos Antimicrobianos/uso terapêutico , Doenças dos Bovinos/tratamento farmacológico , Mannheimia haemolytica/patogenicidade , Infecções por Pasteurellaceae/tratamento farmacológico , Animais , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Líquido da Lavagem Broncoalveolar/microbiologia , Bovinos , Fibrinogênio/análise , Haptoglobinas/análise , Mannheimia haemolytica/efeitos dos fármacos , Mannheimia haemolytica/isolamento & purificação , Oxirredução , Infecções por Pasteurellaceae/veterinária , Cloreto de Sódio/farmacologia
9.
Vet Microbiol ; 234: 34-43, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31213270

RESUMO

Mannheimia haemolytica is an important cause of bovine respiratory disease (BRD). BRD is usually a multifactorial disease with host factors and viral infections influencing pathogenesis. Previous studies that have attempted to experimentally induce pneumonia using aerosolized M. haemolytica alone have produced inconsistent results, yet an aerosol model would be useful to study the details of early infection and to investigate the role of innate defences in pathogenesis. The objective of these studies was to develop and characterize an aerosolized M. haemolytica disease model. In an initial study, conventionally raised calves with higher levels of antibody against M. haemolytica leukotoxin developed acute respiratory distress and diffuse alveolar damage, but did not develop bronchopneumonia, following challenge with M. haemolytica serotype 1. Clean-catch colostrum-deprived calves challenged with 1 × 1010 colony forming units of M. haemolytica serotype 1 consistently developed bronchopneumonia, with elevations in rectal temperature, serum haptoglobin, plasma fibrinogen, and blood neutrophils. Mannheimia haemolytica serotype 1 was consistently isolated from the nasal cavities and lungs of challenged calves. Despite distribution of aerosol and isolation of M. haemolytica in all lung lobes, gross lesions were mainly observed in the cranioventral area of lung. Gross and histologic lesions included neutrophilic bronchopneumonia and fibrinous pleuritis, with oat cells (necrotic neutrophils with streaming nuclei), and areas of coagulative necrosis, which are similar to lesions in naturally occurring BRD. Thus, challenge with M. haemolytica serotype 1 and use of clean-catch colostrum-deprived calves with low or absent antibody titres allowed development of an effective aerosol challenge model that induced typical clinical disease and lesions.


Assuntos
Broncopneumonia/veterinária , Colostro , Modelos Animais de Doenças , Mannheimia haemolytica/patogenicidade , Pneumonia Bacteriana/veterinária , Aerossóis , Fatores Etários , Animais , Broncopneumonia/microbiologia , Bovinos , Doenças dos Bovinos/microbiologia , Feminino , Fibrinogênio/análise , Haptoglobinas/análise , Pulmão/microbiologia , Pulmão/patologia , Neutrófilos/microbiologia , Neutrófilos/patologia , Alvéolos Pulmonares/microbiologia , Alvéolos Pulmonares/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA