Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38732707

RESUMO

A cost-effective solution to the problems that the automotive industry is facing nowadays regarding regulations on emissions and fuel efficiency is to achieve weight reduction of automobile parts. Glass fiber-reinforced polymers are regularly used to manufacture various components, and some parts may also contain thermoplastic elastomers for toughness improvement. This work aimed to investigate the effect of styrene-(ethylene-co-butylene)-styrene triblock copolymer (E) and treated fly ash (C) on the morphological, thermal, and mechanical properties of long glass fiber (G)-reinforced polypropylene (PP). Results showed that the composites obtained through melt processing methods presented similar thermal stability and improved (nano)mechanical properties compared to 25-30 wt.% G-reinforced PP composites (PP-25G/PP-30G). Specifically, the impact strength and surface hardness were greatly improved. The addition of 20 wt.% E led to a 25-39% increase in impact strength and surface elasticity, while the addition of 6.5 wt.% C led to a 16% increase in surface hardness. The composite based on 25 wt.% G, 6.5 wt.% C, and 20 wt.% E presented the best-balanced properties (8-17% increase in impact strength, 38-41% increase in axial strain, and 35% increase in surface hardness) compared with PP-30G/PP-25G. Structural and morphological analysis confirmed the presence of a strong interaction between the components that make the composites. Based on these results, the PP-G-E-C composites could be presented as a viable material for automotive applications.

2.
Polymers (Basel) ; 15(11)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37299344

RESUMO

There is an ever-growing interest in recovering and recycling waste materials due to their hazardous nature to the environment and human health. Recently, especially since the beginning of the COVID-19 pandemic, disposable medical face masks have been a major source of pollution, hence the rise in studies being conducted on how to recover and recycle this waste. At the same time, fly ash, an aluminosilicate waste, is being repurposed in various studies. The general approach to recycling these materials is to process and transform them into novel composites with potential applications in various industries. This work aims to investigate the properties of composites based on silico-aluminous industrial waste (ashes) and recycled polypropylene from disposable medical face masks and to create usefulness for these materials. Polypropylene/ash composites were prepared through melt processing methods, and samples were analyzed to get a general overview of the properties of these composites. Results showed that the polypropylene recycled from face masks used together with silico-aluminous ash can be processed through industrial melt processing methods and that the addition of only 5 wt% ash with a particle size of less than 90 µm, increases the thermal stability and the stiffness of the polypropylene matrix while maintaining its mechanical strength. Further investigations are needed to find specific applications in some industrial fields.

3.
Polymers (Basel) ; 15(2)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36679293

RESUMO

Natural fibers-reinforced polymer composites have progressed rapidly due to their undeniable advantages. Most of the commercial polypropylene (PP)-based materials are characterized by either high impact toughness or high stiffness, while the manufacture of PP composites with both good toughness and stiffness is challenging at present. In this work, poly[styrene-b-(ethylene-co-butylene)-b-styrene] (SEBS) and poly(styrene-b-butadiene-b-styrene) (SBS) copolymers were used in different amounts as modifiers in PP/hemp fibers (HF) composites, with the aim to use them for electrical vehicle parts. The interface in these multiphase systems was controlled by the addition of maleated polypropylene (MAPP). SEBS and SBS showed different effects on the elongation at break of the blends and the corresponding composites due to the HF that stiffened the multiphase systems. Similarly, a different action of MAPP was observed in the composites containing SEBS or SBS: higher Young's and storage moduli were obtained for the composite containing SBS, while greater elongation at break and impact strength values were recorded for the SEBS-containing system. In addition, a remarkable dispersion in the MAPP-containing composite and two times smaller average particle size were revealed by the SEM analysis for the SEBS particles compared to the SBS ones. The higher affinity of SEBS for PP compared to that for SBS and the different morphological characteristics of the systems containing SEBS and SBS may explain the different effects of these impact modifiers on the mechanical properties of the composites. The composites developed in this work were designed as substitutes for the fully synthetic polymeric materials or metal components used in the manufacturing of automotive parts.

4.
Polymers (Basel) ; 13(20)2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34685321

RESUMO

Masterbatches from a linear poly[styrene-b-(ethylene-co-butylene)-b-styrene] (SEBS) and halloysite nanotubes (HNT-QM) were obtained in different conditions of temperature and shear using two co-rotating twin-screw extruders. The influence of screw configuration and melt processing conditions on the morpho-structural, thermal and mechanical properties of masterbatches at macro and nanoscale was studied. A good dispersion of halloysite nanotubes and better thermal stability and tensile and nanomechanical properties were obtained at a lower temperature profile and higher screw speed. The effect of masterbatches, the best and worst alternatives, on the properties of a polypropylene (PP)-glass fiber (GF) composite was also evaluated. Double hardness, tensile strength and modulus and four times higher impact strength were obtained for PP/GF composites containing masterbatches compared to pristine PP. However, the masterbatch with the best properties led further to enhanced mechanical properties of the PP/GF composite. A clear difference between the effects of the two masterbatches was obtained by nanoindentation and nanoscratch tests. These analyses proved to be useful for the design of polymer composites for automotive parts, such as bumpers or door panels. This study demonstrated that setting-up the correct processing conditions is very important to obtain the desired properties for automotive applications.

5.
Materials (Basel) ; 14(11)2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34071470

RESUMO

Environmental contamination, extensive exploitation of fuel sources and accessibility of natural renewable resources represent the premises for the development of composite biomaterials. These materials have controlled properties, being obtained through processes operated in mild conditions with low costs, and contributing to the valorization of byproducts from agriculture and industry fields. A novel board composite including lignocelullosic substrate as wheat straws, fungal mycelium and polypropylene embedded with bacterial spores was developed and investigated in the present study. The bacterial spores embedded in polymer were found to be viable even after heat exposure, helping to increase the compatibility of polymer with hydrophilic microorganisms. Fungal based biopolymer composite was obtained after cultivation of Ganoderma lucidum macromycetes on a mixture including wheat straws and polypropylene embedded with spores from Bacillus amyloliquefaciens. Scanning electron microscopy (SEM) and light microscopy images showed the fungal mycelium covering the substrates with a dense network of filaments. The resulted biomaterial is safe, inert, renewable, natural, biodegradable and it can be molded in the desired shape. The fungal biocomposite presented similar compressive strength and improved thermal insulation capacity compared to polystyrene with high potential to be used as thermal insulation material for applications in construction sector.

6.
Waste Manag ; 118: 391-401, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32942222

RESUMO

In the last several years, the electronic waste, especially printed circuit boards have significantly increased over the world, generating one of the highest rates of solid waste. The recycling process of the printed circuit boards implies mainly the recovery of metals and glass fibers, while the reuse of the polymeric support has remained largely in the phase of research. In this paper, the non-metallic part of printed circuit boards was used as filler (up to 30%), but also to improve the fire resistance of thermoplastic composites based on recycled polypropylene and diene block-copolymers. The synergy between the elastic effect of elastomers and the reinforcing effect of the waste powder into the thermoplastic matrix was studied by mechanical and dynamo-mechanical analysis, X-ray diffraction, optical microscopy, micro-calorimetry and thermo-gravimetrical analysis. Improved mechanical properties, especially impact strength was observed. The compatibization of components considering the interactions between the ethylene-butylene blocks from the hydrogenated and maleinized styrene-butadiene block-copolymer and recycled polypropylene, respectively between the MA groups and the functionalities of the waste powder, evidenced by FTIR, was highlighted by changes in the X-ray pattern and an increased fire resistance and thermal stability.


Assuntos
Resíduo Eletrônico , Polipropilenos , Resíduo Eletrônico/análise , Metais , Reciclagem
7.
Polymers (Basel) ; 12(7)2020 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-32630673

RESUMO

This work aims at developing polyamide 1010 (PA1010) composites with improved fire behavior using a halogen-free flame-retardant system based on melamine (Me) and gallic acid (GA) complexes (MA). The MA complexes were formed by hydrogen bonding, starting from 1:2, 1:1, 2:1 Me:GA molar ratios. PA1010 composites were obtained by melt mixing, followed by compression molding. MA provided a plasticizing effect on the PA1010 matrix by decreasing the glass transition temperature. The influence of MA on PA1010 chain packaging was highlighted in the X-ray diffraction patterns, mainly in the amorphous phase, but affected also the α and γ planes. This was reflected in the dynamic mechanical properties by the reduction of the storage modulus. H-bonds occurrence in MA complexes, improved the efficiency in the gaseous form during fire exposure, facilitating the gas formation and finally reflected in thermal stability, thermo-oxidative stability, LOI results, and vertical burning behavior results. PA1010 containing a higher amount of GA in the complex (MA12) displayed a limiting oxygen index (LOI) value of 33.6%, much higher when compared to neat PA1010 (25.8%). Vertical burning tests showed that all the composites can achieve the V-0 rating in contrast with neat PA1010 that has V-2 classification.

8.
Polymers (Basel) ; 12(4)2020 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-32325658

RESUMO

In this work, formulations based on composites of a linear polypropylene (L-PP), a long-chain branched polypropylene (LCB-PP), a polypropylene-graft-maleic anhydride (PP-MA), a styrene-ethylene-butylene-styrene copolymer (SEBS), glass fibers (GF), and halloysite nanotubes (HNT-QM) have been foamed by using the improved compression molding route (ICM), obtaining relative densities of about 0.62. The combination of the inclusion of elastomer and rigid phases with the use of the LCB-PP led to foams with a better cellular structure, an improved ductility, and considerable values of the elastic modulus. Consequently, the produced foams presented simultaneously an excellent impact performance and a high stiffness with respect to their corresponding solid counterparts.

9.
Polymers (Basel) ; 10(8)2018 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-30960741

RESUMO

From an environmental and cost-effective perspective, a number of research challenges can be found for electronics, household, but especially in the automotive polymer parts industry. Reducing synthesis steps, parts coating and painting, or other solvent-assisted processes, have been identified as major constrains for the existing technologies. Therefore, simple polymer processing routes (mixing, extrusion, injection moulding) were used for obtaining PMMA/HNT nanocomposites. By these techniques, an automotive-grade polymethylmethacrylate (PMMA) was modified with halloysite nanotubes (HNT) and an eco-friendly additive N,N'-ethylenebis(stearamide) (EBS) to improve nanomechanical properties involved in scratch resistance, mechanical properties (balance between tensile strength and impact resistance) without diminishing other properties. The relationship between morphological/structural (XRD, TEM, FTIR) and tribological (friction) properties of PMMA nanocomposites were investigated. A synergistic effect was found between HNT and EBS in the PMMA matrix. The synergy was attained by the phase distribution resulted from the selective interaction between partners and favourable processing conditions. Modification of HNT with EBS improved the dispersion of nanoparticles in the polymer matrix by increasing their interfacial compatibility through hydrogen bonding established by amide groups with aluminol groups. The increased interfacial adhesion further improved the nanocomposite scratch resistance. The PMMA/HNT-EBS nanocomposite had a lower coefficient of friction and lower scratch penetration depth than PMMA/HNT nanocomposite.

10.
J Environ Sci (China) ; 35: 27-37, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26354689

RESUMO

Heterogeneous membranes were obtained by using styrene-acrylonitrile copolymer (SAN) blends with low content of ion-exchanger particles (5wt.%). The membranes obtained by phase inversion were used for the removal of copper ions from synthetic wastewater solutions by electrodialytic separation. The electrodialysis was conducted in a three cell unit, without electrolyte recirculation. The process, under potentiostatic or galvanostatic control, was followed by pH and conductivity measurements in the solution. The electrodialytic performance, evaluated in terms of extraction removal degree (rd) of copper ions, was better under potentiostatic control then by the galvanostatic one and the highest (over 70%) was attained at 8V. The membrane efficiency at small ion-exchanger load was explained by the migration of resin particles toward the pores surface during the phase inversion. The prepared membranes were characterized by various techniques i.e. optical microscopy, Fourier transform infrared spectroscopy, scanning electron microscopy, thermogravimetric analysis and differential thermal analysis and contact angle measurements.


Assuntos
Acrilonitrila/química , Cobre/química , Polímeros/química , Poliestirenos/química , Águas Residuárias/análise , Purificação da Água/métodos , Troca Iônica , Íons/química , Purificação da Água/economia
11.
Sci Technol Adv Mater ; 15(1): 015004, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27877646

RESUMO

The core-shell structure in oriented cylindrical rods of polypropylene (PP) and nanoclay composites (NCs) from PP and montmorillonite (MMT) is studied by microbeam small-angle x-ray scattering (SAXS). The structure of neat PP is almost homogeneous across the rod showing regular semicrystalline stacks. In the NCs the discrete SAXS of arranged crystalline PP domains is limited to a skin zone of 300 µm thickness. Even there only frozen-in primary lamellae are detected. The core of the NCs is dominated by diffuse scattering from crystalline domains placed at random. The SAXS of the MMT flakes exhibits a complex skin-core gradient. Both the direction of the symmetry axis and the apparent perfection of flake-orientation are varying. Thus there is no local fiber symmetry, and the structure gradient cannot be reconstructed from a scan across the full rod. To overcome the problem the rods are machined. Scans across the residual webs are performed. For the first time webs have been carved out in two principal directions. Comparison of the corresponding two sets of SAXS patterns demonstrates the complexity of the MMT orientation. Close to the surface (< 1 mm) the flakes cling to the wall. The variation of the orientation distribution widths indicates the presence of both MMT flakes and grains. The grains have not been oriented in the flowing melt. An empirical equation is presented which describes the variation from skin to core of one component of the inclination angle of flake-shaped phyllosilicate filler particles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA