Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(51): 28191-28203, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38091467

RESUMO

We demonstrate the effective establishment of long-range electrostatic interactions among colloidal silica nanospheres through acid treatment, enabling their assembly into colloidal crystals at remarkably low concentrations. This novel method overcomes the conventional limitation in colloidal silica assembly by removing entrapped NH4+ ions and enhancing the electrical double layer (EDL) thickness, offering a time-efficient alternative to increase electrostatic interactions compared with methods like dialysis. The increased EDL thickness facilitates the assembly of SiO2 nanospheres into a body-centered-cubic lattice structure at low particle concentrations, allowing for broad spectrum tunability and high tolerance to particle size polydispersity. Further, we uncover a disorder-order transition during colloidal crystallization at low particle concentrations, with the optimal concentration for crystal formation governed by both thermodynamic and kinetic factors. This work not only provides insights into assembly mechanisms but also paves the way for the design and functionalization of colloidal silica-based photonic crystals in diverse applications.

2.
Nanoscale Horiz ; 7(3): 319-327, 2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35166291

RESUMO

We demonstrate a bio-inspired coating for novel imaging and sensing designs: the coating sorts different colors and linear polarizations. This coating, composed of conducting, nanofibrous polyaniline in an inverse opal film (PANI-IOF), is inexpensive and can feasibly be deposited over large areas on a range of flexible and non-flat substrates. With PANI IOFs, light is scattered into azimuthally polarized Debye rings. Subsequently, the diffracted speckle patterns carry compressed representations of the polarized illumination, which we reconstruct using shallow neural networks.


Assuntos
Nanofibras , Compostos de Anilina
3.
Sci Rep ; 12(1): 2777, 2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35177726

RESUMO

For free space optical (FSO) communication, a small misalignment of the transceivers may result in link failure or severe performance degradation. It can be difficult to track the narrow optical beams over long distances. Here, we propose "diffractal space-division multiplexing" (DSDM), an FSO transmission system capable of supporting misaligned roaming transceivers. This system enables spatial multiplexing for enhanced data capacity with partial off-axis beam reception. We numerically simulate and analyze the performance of the DSDM system with a particular focus on the divergence angle, roaming area, kernel bit-error-rate (K-BER), and fractal order. Our simulation results achieve K-BERs of 10[Formula: see text] with [Formula: see text]-pixel fractal beams at link distances of 2.5 km when the receiver sizes are 30[Formula: see text] of the effective beam diameter.

4.
Nanoscale ; 12(6): 3827-3833, 2020 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-31995089

RESUMO

There is significant interest in the utility of asymmetric nanoaperture arrays as substrates for the surface-enhanced detection, fluorescence, and imaging of individual molecules. This work introduces obliquely-cut, out-of-plane, coaxial layered structures on an aperture edge. We refer to these structures as nanofingernails, which emphasizes their curved, oblique, and out-of-plane features. Broadband coupling into chiral hybrid plasmon modes and helicity-dependent near-field scattering without circular dichroism are demonstrated. The unusually-broadband, multipolar modes of nanofingernail micropore structures exhibit phase retardation effects that may be useful for achieving spatial overlap at different frequencies. The nanofingernail geometry shows new potential for simultaneous polarization-enhanced hyperspectral imaging on apertured, plasmonic surfaces.

5.
Nano Lett ; 18(4): 2564-2570, 2018 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-29584938

RESUMO

Long-range interactions often proceed as a sequence of hopping through intermediate, statistically favored events. Here, we demonstrate predictable mechanical dynamics of particles that arise from the Lorentz force between plasmons. Even if the radiation is weak, the nonconservative Lorentz force produces stable locations perpendicular to the plasmon oscillation; over time, distinct patterns emerge. Experimentally, linearly polarized light illumination leads to the formation of 80 nm diameter Au nanoparticle chains, perpendicularly aligned, with lengths that are orders of magnitude greater than their plasmon near-field interaction. There is a critical intensity threshold and optimal concentration for observing self-assembly.

6.
ACS Omega ; 3(10): 12554-12561, 2018 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-31457990

RESUMO

There is strong demand for achieving morphological control of conducting polymers in its many potential applications, from energy harvesting to spintronics. Here, the static magnetic-field-induced alignment of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) particles is demonstrated. PEDOT:PSS thin films cast under modest mT-level magnetic fields exhibit a fourfold increase in the Seebeck coefficient and doubled electrical conductivity. Atomic force microscopy measurements confirm the presence of conducting islands that exhibit a 10-fold increase in the local charge carrier mobility and threshold behavior that is associated with phase separation. High-resolution scanning electron microscopy identifies a consistent structural coil-to-rod transition, and three-dimensional time-of-flight secondary-ion mass spectrometry imaging shows that the rodlike structures coincide with PEDOT domains that generally align with the magnetic field and cluster on the outer surface. Grazing-incidence small-angle X-ray scattering, Raman spectra, electron paramagnetic resonance, and circular dichroism spectroscopy point to the physical nature of the magnetophoretic alignment, which is expected to occur via magnetic coupling of PEDOT domains with polaron modes. Because casting under mT-level magnetic fields increases the electrical conductivity and Seebeck coefficient of PEDOT:PSS thin films without additional dopants that commonly limit the thermoelectric performance, our research reveals that low-field magnetophoresis significantly influences the structure and corresponding physical properties of PEDOT:PSS. Our results also point to concerns that the presence of small external magnetic fields in laboratory settings may appreciably and inadvertently influence the PEDOT:PSS morphology during settling, drying, or annealing processes.

7.
ACS Omega ; 3(4): 3868-3873, 2018 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-31458628

RESUMO

The drying of nanocolloidal polymers is governed by the interplay among surface tension, evaporation, and contact-line pinning, among other phenomena. Here, we describe the sequential evolution of poly-3,4-ethylenedioxythiophene:poly(styrene sulfonate) (PEDOT:PSS) through two distinct regimes evidenced by annular or radial cracking and show that the cracking dynamics and solvent-retention postdrying and postcracking are mediated by wetting to the substrate surface. The corresponding changes in the PEDOT:PSS morphology are also observed to relate to the radial or cracking dynamics. It is suggested that the wetting-dependent effect offers a route to control morphology, understand solvent retention, and reduce cracking in polymer latex films. This study highlights the importance of substrate choice, an underexplored area of investigation in the study of colloidal materials.

8.
Sci Rep ; 7: 40718, 2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28176792

RESUMO

The response of an individual meta-atom is often generalized to explain the collective response of a metasurface in a manner that neglects the interactions between meta-atoms. Here, we study a metasurface composed of tilted achiral meta-atoms with no spatial variation of the unit cell that derives appreciable optical chirality solely from the asymmetric interactions between meta-atoms. The interactions between meta-atoms are considered to stem from the Lorentz force arising from the Larmor radiation of adjacent plasmonic resonators because their inclusion in a simple model accurately predicts the bonding/anti- bonding modes that are measured experimentally. We also experimentally observe the emergence of multiple polarization eigenmodes, among other polarization-dependent responses, which cannot be modeled with the conventional formalism of transmission matrices. Our results are vital to the precise characterization and design of metasurfaces.

9.
Opt Express ; 24(10): 10402-11, 2016 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-27409864

RESUMO

There is wide interest in understanding and leveraging the nonlinear plasmon-induced potentials of nanostructured materials. We investigate the electrical response produced by spin-polarized light across a large-area bottom-up assembled 2D plasmonic crystal. Numerical approximations of the Lorentz forces provide quantitative agreement with our experimentally-measured DC voltages. We show that the underlying mechanism of the spin-polarized voltages is a gradient force that arises from asymmetric, time-averaged hotspots, whose locations shift with the chirality of light. Finally, we formalize the role of spin-orbit interactions in the shifted intensity patterns and significantly advance our understanding of the physical phenomena, often related to the spin Hall effect of light.

10.
Opt Express ; 23(22): 28471-8, 2015 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-26561118

RESUMO

When plane waves diffract through fractal-patterned apertures, the resulting far-field profiles or diffractals also exhibit iterated, self-similar features. Here we show that this specific architecture enables robust signal transmission and spatial multiplexing: arbitrary parts of a diffractal contain sufficient information to recreate the entire original sparse signal.

11.
Opt Express ; 19(10): 9139-46, 2011 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-21643168

RESUMO

We investigate 3D spatio-temporal focusing of elliptically-shaped beams in a bulk medium with Kerr nonlinearity and anomalous group-velocity dispersion (GVD). Strong space-time localization of the mode is observed through multi-filamentation with temporal compression by a factor of 3. This behavior is in contrast to the near-zero GVD regime in which minimal pulse temporal compression is observed. Our theoretical simulations qualitatively reproduce the experimental results showing the highly localized spatio-temporal profile in the anomalous-GVD regime, which contrasts to the weakly localized pulse in the normal-GVD regime.

12.
Opt Express ; 19(10): 9309-14, 2011 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-21643186

RESUMO

We investigate experimentally the role that the initial temporal profile of ultrashort laser pulses has on the self-focusing dynamics in the anomalous group-velocity dispersion (GVD) regime. We observe that pulse-splitting occurs for super-Gaussian pulses, but not for Gaussian pulses. The splitting does not occur for either pulse shape when the GVD is near-zero. These observations agree with predictions based on the nonlinear Schrödinger equation, and can be understood intuitively using the method of nonlinear geometrical optics.

13.
Opt Express ; 16(1): 390-401, 2008 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-18521171

RESUMO

We provide a theoretical description of the spatio-temporal dynamics of sequential filamentation in noble gases that can lead to pulse compression down to nearly single-cycle pulses. We show that the strong pulse compression occurs as a result of serially-generated on-axis filaments and spectral filtering of an extensive blue-shifted compressible spectra. We show that the dynamics of this sequential filamentation can be readily tuned by varying the gas pressure and can be scaled to various pulse energies.


Assuntos
Gases/química , Gases/efeitos da radiação , Lasers , Modelos Teóricos , Simulação por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Luz , Pressão
14.
Opt Lett ; 33(1): 13-5, 2008 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-18157242

RESUMO

We investigate numerically and experimentally the spatial collapse dynamics and polarization stability of radially and azimuthally polarized vortex beams in pure Kerr medium. These beams are unstable to azimuthal modulation instabilities and break up into distinct collapsing filaments. The polarization of the filaments is primarily linear with weak circular components at the filaments' boundaries. This unique hybrid linear-circular polarization collapse pattern persists to advanced stages of collapse and appears to be a general feature of beams with spatially variant linear polarization.

15.
Phys Rev Lett ; 99(13): 133902, 2007 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-17930591

RESUMO

We investigate the spatial dynamics of optical necklace beams in Kerr media. For powers corresponding to less than the critical power for self-focusing per bead, we experimentally confirm the confinement of these necklace beams as proposed in [Phys. Rev. Lett. 81, 4851 (1998)10.1103/PhysRevLett.81.4851]. At higher powers, we observe a transition from collective necklace behavior to one in which the beads of the necklace collapse independently. We observe that, below the transition power, the perturbed necklace still behaves in a collective manner with coupling between individual beads but that, at higher powers, it undergoes a similar transition to a decoupled state of the necklace.

16.
Phys Rev Lett ; 96(13): 133901, 2006 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-16711987

RESUMO

We theoretically and experimentally investigate the self-focusing of optical vortices in Kerr media. We observe collapse to a distinct self-similar profile, which becomes unstable to azimuthal perturbations. We analyze the azimuthal modulational instability for ring-shaped vortices and predict the number of azimuthal maxima solely as a function of power and topological charge. In our experiments, the observed multiple-filamentation patterns are in excellent agreement with our theoretical analysis.

17.
Opt Express ; 14(12): 5468-75, 2006 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-19516712

RESUMO

We investigate the self-focusing dynamics of super-Gaussian optical beams in a Kerr medium. We find that up to several times the critical power for self-focusing, super-Gaussian beams evolve towards a Townes profile. At higher powers the super-Gaussian beams form rings which break into filaments as a result of noise. Our results are consistent with the observed self-focusing dynamics of femtosecond laser pulses in air [1] in which filaments are formed along a ring about the axis of the initial beam where the initial beam did not form a ring.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA