Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 11(1): 3623, 2020 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-32681040

RESUMO

Polar van der Waals chalcogenophosphates exhibit unique properties, such as negative electrostriction and multi-well ferrielectricity, and enable combining dielectric and 2D electronic materials. Using low temperature piezoresponse force microscopy, we revealed coexistence of piezoelectric and non-piezoelectric phases in CuInP2Se6, forming unusual domain walls with enhanced piezoelectric response. From systematic imaging experiments we have inferred the formation of a partially polarized antiferroelectric state, with inclusions of structurally distinct ferrielectric domains enclosed by the corresponding phase boundaries. The assignment is strongly supported by optical spectroscopies and density-functional-theory calculations. Enhanced piezoresponse at the ferrielectric/antiferroelectric phase boundary and the ability to manipulate this entity with electric field on the nanoscale expand the existing phenomenology of functional domain walls. At the same time, phase-coexistence in chalcogenophosphates may lead to rational strategies for incorporation of ferroic functionality into van der Waals heterostructures, with stronger resilience toward detrimental size-effects.

2.
Dalton Trans ; 46(13): 4245-4258, 2017 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-28280830

RESUMO

External stimuli enabling either a continuous tuning or an abrupt switching of the basic properties of materials that are utilized in various industrial appliances could significantly extend their range of use. The key characteristics of semiconductors are basically linked to their electronic and optical properties. In this study, we experimentally demonstrated that two kindred wide-band-gap semiconductors, ferroelectric Sn2P2Se6 and paraelectric Pb2P2S6, which are commonly used in optical technologies, have remarkably different and unusual responses in their electronic band structures to applied moderate pressures. The electrical resistance of Sn2P2Se6 smoothly decreased with pressure by about eight orders of magnitude to 10 GPa, thereby suggesting a progressive shrinkage in its band gap; whereas, the resistance of Pb2P2S6 was only insignificantly lowered with pressure to 20 GPa. By means of Raman spectroscopy, we observed several distinct crossovers in the compression behaviour of both crystals and attributed them to phase transitions. These Raman studies provided evidence for the metallization of Sn2P2Se6 at 29 GPa and Pb2P2S6 at 49 GPa. We inferred that, namely, the metal cations in these crystals control the pressure responses of their band structures and proposed that the other M2P2X6 compounds, those already known and those not yet reported (e.g., with M = Cu, In, Fe, Co, Mn, Cr, Ca, Sr, and Mg), could also exhibit the diverse and non-trivial pressure responses of their electronic band structures. Thus, our study has revealed the significant potential for the stress-related technologies of this poorly-studied class of materials, thereby stimulating both the synthesis and investigation of new members.

3.
Nanoscale ; 7(44): 18579-83, 2015 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-26489774

RESUMO

The CuCr1-xInxP2S6 system represents a large family of metal chalcogenophosphates that are unique and promising candidates for 2D materials with functionalities such as ferroelectricity. In this work, we carried out detailed microstructural and chemical characterization of these compounds using aberration-corrected STEM, in order to understand the origin of these different ordering phenomena. Quantitative STEM-HAADF imaging and analysis identified the stacking order of an 8-layer thin flake, which leads to the identification of anti-site In(3+)(Cu(+)) doping. We believe that these findings will pave the way towards understanding the ferroic coupling phenomena in van der Waals lamellar compounds, as well as their potential applications in 2-D electronics.

4.
Int J Mol Sci ; 13(11): 14356-84, 2012 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-23203069

RESUMO

An analysis of the P2S6 cluster electronic structure and its comparison with the crystal valence band in the paraelectric and ferroelectric phases has been done by first-principles calculations for Sn2P2S6 ferroelectrics. The origin of ferroelectricity has been outlined. It was established that the spontaneous polarization follows from the stereochemical activity of the electron lone pair of tin cations, which is determined by hybridization with P2S6 molecular orbitals. The chemical bonds covalence increase and rearrangement are related to the valence band changes at transition from the paraelectric phase to the ferroelectric phase.


Assuntos
Modelos Químicos , Transição de Fase
5.
Phys Rev Lett ; 99(20): 207601, 2007 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-18233186

RESUMO

An ab initio-based model of the temperature-induced ferroelectric phase transition in Sn2P2S6 (SPS) as a prototype of an unconventional ferroelectric is developed. The order parameter in SPS is found as the valley line on a total-energy surface of the zone-center fully symmetrical Ag and polar Bu distortions. Significant nonlinear coupling between order parameter and strain is observed. Monte Carlo simulations describe the additional low-temperature rearrangement in polar structure, which appears in domain boundaries, and describe the relaxation phenomena near the ferroelectric phase transition.

6.
Opt Express ; 13(24): 9890-6, 2005 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-19503198

RESUMO

We demonstrate self-pumped optical phase conjugation in Te-doped Sn2P2S6, a semiconducting ferroelectric crystal, using a 1.06 microm wavelength cw Nd:YAG laser. The photorefractive gain of this crystal has been increased to Gamma = (3.9+/- 0.4) cm-1 by Te doping. We observed self-pumped optical phase conjugation in a ring cavity scheme with phase conjugate reflectivities of more than 40 percent and a very fast phase conjugate rise time below 100ms at a light intensity of 20 W/cm2. This is more than two orders of magnitude faster than in any other photorefractive crystal, as e.g. in Rh-doped BaTiO3.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA