Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 30(26): 47867-47878, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36558705

RESUMO

The development of the broad-bandwidth photon sources emitting in the soft X-ray range has attracted great attention for a long time due to the possible applications in high-resolution spectroscopy, nano-metrology, and material sciences. A high photon flux accompanied by a broad, smooth spectrum is favored for the applications such as near-edge X-ray absorption fine structure (NEXAFS), extended X-ray absorption fine structure (EXAFS), or XUV/X-ray coherence tomography (XCT). So far, either large-scale facilities or technologically challenging systems providing only limited photon flux in a single shot dominate the suitable sources. Here, we present a soft, broad-band (1.5 nm - 10.7 nm) soft X-ray source. The source is based on the interaction of very intense laser pulses with a target formed by a cluster mixture. A photon yield of 2.4 × 1014 photons/pulse into 4π (full space) was achieved with a medium containing Xe clusters of moderate-size mixed with a substantial amount of extremely large ones. It is shown that such a cluster mixture enhances the photon yield in the soft X-ray range by roughly one order of magnitude. The size of the resulting source is not beneficial (≤500 µm but this deficit is compensated by a specific spectral structure of its emission fulfilling the specific needs of the spectroscopic (broad spectrum and high signal dynamics) and metrological applications (broad and smoothed spectrum enabling a sub-nanometer resolution limit for XCT).

2.
Rev Sci Instrum ; 87(9): 091501, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27782609

RESUMO

Various types of targetry are used nowadays in laser matter interaction experiments. Such targets are characterized using different methods capable of acquiring information about the targets such as density, spatial distribution, and temporal behavior. In this mini-review paper, a particular type of target will be presented. The targets under consideration are gas puff targets of various and novel geometries. Those targets were investigated using extreme ultraviolet (EUV) and soft X-ray (SXR) imaging techniques, such as shadowgraphy, tomography, and pinhole camera imaging. Details about characterization of those targets in the EUV and SXR spectral regions will be presented.

3.
Opt Express ; 22(4): 4161-7, 2014 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-24663740

RESUMO

We recorded the fast oscillation of sub-micron cantilevers using time-resolved extreme ultraviolet (EUV) Fourier transform holography. A tabletop capillary discharge EUV laser with a wavelength of 46.9 nm provided a large flux of coherent illumination that was split using a Fresnel zone plate to generate the object and the reference beams. The reference wave was produced by the first order focus while a central opening in the zone plate provided a direct illumination of the cantilevers. Single-shot holograms allowed for the composition of a movie featuring the fast oscillation. Three-dimensional displacements of the object were determined as well by numerical back-propagation, or "refocusing" of the electromagnetic fields during the reconstruction of a single hologram.

4.
Opt Lett ; 39(3): 532-5, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24487858

RESUMO

A tomographic method for three-dimensional reconstruction of low density objects is presented and discussed. The experiment was performed in the extreme ultraviolet (EUV) spectral region using a desktop system for enhanced optical contrast and employing a compact laser-plasma EUV source, based on a double stream gas puff target. The system allows for volume reconstruction of transient gaseous objects, in this case gas jets, providing additional information for further characterization and optimization. Experimental details and reconstruction results are shown.

5.
Opt Express ; 21(8): 9959-66, 2013 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-23609701

RESUMO

We demonstrate single and multi-shot Fourier transform holography with the use of a tabletop extreme ultraviolet laser. The reference wave was produced by a Fresnel zone plate with a central opening that allowed the incident beam to illuminate the sample directly. The high reference wave intensity allows for larger objects to be imaged compared to mask-based lensless Fourier transform holography techniques. We obtain a spatial resolution of 169 nm from a single laser pulse and a resolution of 128 nm from an accumulation of 20 laser pulses for an object ~11x11µm(2) in size. This experiment utilized a tabletop extreme ultraviolet laser that produces a highly coherent ~1.2 ns laser pulse at 46.9 nm wavelength.


Assuntos
Holografia/instrumentação , Imageamento Tridimensional/instrumentação , Lasers , Refratometria/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Análise de Fourier , Raios Ultravioleta
6.
Opt Express ; 19(10): 9541-50, 2011 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-21643212

RESUMO

In this paper we report a desk-top microscopy reaching 50 nm spatial resolution in very compact setup using a gas-puff laser plasma EUV source. The thickness of an object and the bandwidth of illuminating radiation were studied in order to estimate their quantitative influence on the EUV microscope spatial resolution. EUV images of various thickness objects obtained by illumination with variable bandwidth EUV radiation were compared in terms of knife-edge spatial resolution to study the bandwidth/object thickness parasitic influence on spatial resolution of the EUV microscope.

7.
Opt Lett ; 35(14): 2337-9, 2010 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-20634822

RESUMO

We report the first (to our knowledge) demonstration of a tabletop, extreme UV (EUV) transmission microscope at 13.8 nm wavelength with a spatial (half-pitch) resolution of 69 nm. In the experiment, a compact laser-plasma EUV source based on a gas puff target is applied to illuminate an object. A multilayer ellipsoidal mirror is used to focus quasi-monochromatic EUV radiation onto the object, while a Fresnel zone plate objective forms the image. The experiment and the spatial resolution measurements, based on a knife-edge test, are described. The results might be useful for the realization of a compact high-resolution tabletop imaging systems for actinic defect characterization.

8.
Proc Natl Acad Sci U S A ; 105(1): 24-7, 2008 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-18162534

RESUMO

Light microscopy has greatly advanced our understanding of nature. The achievable resolution, however, is limited by optical wavelengths to approximately 200 nm. By using imaging and labeling technologies, resolutions beyond the diffraction limit can be achieved for specialized specimens with techniques such as near-field scanning optical microscopy, stimulated emission depletion microscopy, and photoactivated localization microscopy. Here, we report a versatile soft x-ray diffraction microscope with 70- to 90-nm resolution by using two different tabletop coherent soft x-ray sources-a soft x-ray laser and a high-harmonic source. We also use field curvature correction that allows high numerical aperture imaging and near-diffraction-limited resolution of 1.5lambda. A tabletop soft x-ray diffraction microscope should find broad applications in biology, nanoscience, and materials science because of its simple optical design, high resolution, large depth of field, 3D imaging capability, scalability to shorter wavelengths, and ultrafast temporal resolution.


Assuntos
Microscopia/instrumentação , Óptica e Fotônica/instrumentação , Difração de Raios X/instrumentação , Algoritmos , Desenho de Equipamento , Interpretação de Imagem Assistida por Computador , Lasers , Lentes , Nanopartículas , Nanotecnologia/métodos , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA