Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 55(3): 1527-1534, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33476127

RESUMO

Toxicity of methylmercury (MeHg) to wildlife and humans results from its binding to cysteine residues of proteins, forming MeHg-cysteinate (MeHgCys) complexes that hinder biological functions. MeHgCys complexes can be detoxified in vivo, yet how this occurs is unknown. We report that MeHgCys complexes are transformed into selenocysteinate [Hg(Sec)4] complexes in multiple animals from two phyla (a waterbird, freshwater fish, and earthworms) sampled in different geographical areas and contaminated by different Hg sources. In addition, high energy-resolution X-ray absorption spectroscopy (HR-XANES) and chromatography-inductively coupled plasma mass spectrometry of the waterbird liver support the binding of Hg(Sec)4 to selenoprotein P and biomineralization of Hg(Sec)4 to chemically inert nanoparticulate mercury selenide (HgSe). The results provide a foundation for understanding mercury detoxification in higher organisms and suggest that the identified MeHgCys to Hg(Sec)4 demethylation pathway is common in nature.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Oligoquetos , Animais , Aves , Desmetilação , Humanos
2.
Photochem Photobiol ; 91(1): 102-8, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25319211

RESUMO

Methylation of cytosine is a common biological process both in prokaryotic and eukaryotic cells. In addition to 5-methylcytosine (5mC), some bacterial species contain in their genome N(4) -methylcytosine (N4mC). Methylation at C5 has been shown to enhance the formation of pyrimidine dimeric photoproducts but nothing is known of the effect of N4 methylation on UV-induced DNA damage. In the present work, we compared the yield and the nature of bipyrimidine photoproducts induced in a series of trinucleotides exhibiting a TXG sequence where X is either T, C, 5mC or N4mC. HPLC associated to tandem mass spectrometry was used to quantify cyclobutane pyrimidine dimers (CPD), (6-4) photoproducts (64PP) and their Dewar valence isomer. Methylation at position N4 was found to drastically increase the reactivity of C upon exposure to both UVC and UVB and to favor the formation of 64PP. In contrast methylation at C5 increased the yield of CPD at the expense of 64PP. In addition, enhancement of photoreactivity by C5 methylation was much higher in the UVB than in the UVC range. These results show the drastic effect of the methylation site on the photochemistry of cytosine.


Assuntos
Citosina/metabolismo , Dímeros de Pirimidina/metabolismo , Cromatografia Líquida de Alta Pressão , Dimerização , Metilação , Espectrometria de Massas em Tandem
3.
Chemistry ; 20(19): 5787-94, 2014 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-24668918

RESUMO

Mutagenic cyclobutane pyrimidine dimers (CPDs) can be induced in DNA through either direct excitation or photosensitized triplet-triplet energy transfer (TTET). In the latter pathway, thymines are expected to receive the excitation energy from the photosensitizer and react with adjacent pyrimidines. By using state-of-the art analytical tools, we provide herein additional information on the formation of cytosine-containing CPDs. We thus determined the yield of all possible CPDs upon TTET in a series of natural DNAs with various base compositions. We show that the distribution of CPDs cannot be explained only by excitation of individual thymines. We propose that the mechanism for TTET involves at least dinucleotides as the minimal targets. The observation of the formation of cytosine-cytosine CPDs also suggests that additional pathways are involved in this photosensitized reaction.


Assuntos
Citosina/química , Dano ao DNA/efeitos da radiação , Fármacos Fotossensibilizantes/química , Dímeros de Pirimidina/química , Timina/química , Transferência de Energia , Fotoquímica , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA