Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
J Vis ; 23(12): 6, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37862008

RESUMO

For decades, neural suppression in early visual cortex has been thought to be fixed. But recent work has challenged this assumption by showing that suppression can be reweighted based on recent history; when pairs of stimuli are repeatedly presented together, suppression between them strengthens. Here we investigate the temporal dynamics of this process using a steady-state visual evoked potential (SSVEP) paradigm that provides a time-resolved, direct index of suppression between pairs of stimuli flickering at different frequencies (5 and 7 Hz). Our initial analysis of an existing electroencephalography (EEG) dataset (N = 100) indicated that suppression increases substantially during the first 2-5 seconds of stimulus presentation (with some variation across stimulation frequency). We then collected new EEG data (N = 100) replicating this finding for both monocular and dichoptic mask arrangements in a preregistered study designed to measure reweighting. A third experiment (N = 20) used source-localized magnetoencephalography and found that these effects are apparent in primary visual cortex (V1), consistent with results from neurophysiological work. Because long-standing theories propose inhibition/excitation differences in autism, we also compared reweighting between individuals with high versus low autistic traits, and with and without an autism diagnosis, across our three datasets (total N = 220). We find no compelling differences in reweighting that are associated with autism. Our results support the normalization reweighting model and indicate that for prolonged stimulation, increases in suppression occur on the order of 2-5 seconds after stimulus onset.


Assuntos
Transtorno Autístico , Potenciais Evocados Visuais , Humanos , Estimulação Luminosa , Eletroencefalografia/métodos , Magnetoencefalografia
2.
Curr Biol ; 33(17): R900-R901, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37699345

RESUMO

A new study describes a set of behavioural experiments that assess whether gene therapy can restore colour vision in patients with congenital achromatopsia.


Assuntos
Defeitos da Visão Cromática , Visão de Cores , Humanos , Defeitos da Visão Cromática/genética , Defeitos da Visão Cromática/terapia
3.
Elife ; 122023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37750670

RESUMO

How does the human brain combine information across the eyes? It has been known for many years that cortical normalization mechanisms implement 'ocularity invariance': equalizing neural responses to spatial patterns presented either monocularly or binocularly. Here, we used a novel combination of electrophysiology, psychophysics, pupillometry, and computational modeling to ask whether this invariance also holds for flickering luminance stimuli with no spatial contrast. We find dramatic violations of ocularity invariance for these stimuli, both in the cortex and also in the subcortical pathways that govern pupil diameter. Specifically, we find substantial binocular facilitation in both pathways with the effect being strongest in the cortex. Near-linear binocular additivity (instead of ocularity invariance) was also found using a perceptual luminance matching task. Ocularity invariance is, therefore, not a ubiquitous feature of visual processing, and the brain appears to repurpose a generic normalization algorithm for different visual functions by adjusting the amount of interocular suppression.


Assuntos
Olho , Percepção Visual , Humanos , Animais , Algoritmos , Aves , Encéfalo
4.
J Vis ; 23(7): 10, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37450287

RESUMO

The normal human retina contains several classes of photosensitive cell-rods for low-light vision, three cone classes for daylight vision, and intrinsically photosensitive retinal ganglion cells (ipRGCs) expressing melanopsin for non-image-forming functions, including pupil control, melatonin suppression, and circadian photoentrainment. The spectral sensitivities of the photoreceptors overlap significantly, which means that most lights will stimulate all photoreceptors to varying degrees. The method of silent substitution is a powerful tool for stimulating individual photoreceptor classes selectively and has found much use in research and clinical settings. The main hardware requirement for silent substitution is a spectrally calibrated light stimulation system with at least as many primaries as there are photoreceptors under consideration. Device settings that will produce lights to selectively stimulate the photoreceptor(s) of interest can be found using a variety of analytic and algorithmic approaches. Here we present PySilSub (https://github.com/PySilentSubstitution/pysilsub), a novel Python package for silent substitution featuring flexible support for individual colorimetric observer models (including human and mouse observers), multiprimary stimulation devices, and solving silent substitution problems with linear algebra and constrained numerical optimization. The toolbox is registered with the Python Package Index and includes example data sets from various multiprimary systems. We hope that PySilSub will facilitate the application of silent substitution in research and clinical settings.


Assuntos
Visão de Cores , Luz , Camundongos , Humanos , Animais , Células Fotorreceptoras Retinianas Cones/fisiologia , Células Ganglionares da Retina/fisiologia , Células Fotorreceptoras Retinianas Bastonetes/fisiologia , Opsinas de Bastonetes
5.
J Neurosci ; 43(29): 5378-5390, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37369590

RESUMO

Radial frequency (RF) patterns, created by sinusoidal modulations of a circle's radius, are processed globally when RF is low. These closed shapes therefore offer a useful way to interrogate the human visual system for global processing of curvature. RF patterns elicit greater responses than those to radial gratings in V4 and more anterior face-selective regions of the ventral visual pathway. This is largely consistent with work on nonhuman primates showing curvature processing emerges in V4, but is evident also higher up the ventral visual stream. Rather than contrasting RF patterns with other stimuli, we presented them at varied frequencies in a regimen that allowed tunings to RF to be derived from 8 human participants (3 female). We found tuning to low RF in lateral occipital areas and to some extent in V4. In a control experiment, we added a high-frequency ripple to the stimuli disrupting the local contour. Low-frequency tuning to these stimuli remained in the ventral visual stream, underscoring its role in global processing of shape curvature. We then used representational similarity analysis to show that, in lateral occipital areas, the neural representation was related to stimulus similarity, when it was computed with a model that captured how stimuli are perceived. We therefore show that global processing of shape curvature emerges in the ventral visual stream as early as V4, but is found more strongly in lateral occipital regions, which exhibit responses and representations that relate well to perception.SIGNIFICANCE STATEMENT We show that tuning to low radial frequencies, known to engage global shape processing mechanisms, was localized to lateral occipital regions. When low-level stimulus properties were accounted for such tuning emerged in V4 and LO2 in addition to the object-selective region LO. We also documented representations of global shape properties in lateral occipital regions, and these representations were predicted well by a proxy of the perceptual difference between the stimuli.


Assuntos
Percepção de Forma , Vias Visuais , Animais , Humanos , Feminino , Vias Visuais/fisiologia , Rádio (Anatomia) , Reconhecimento Visual de Modelos/fisiologia , Lobo Occipital , Percepção de Forma/fisiologia , Estimulação Luminosa
6.
PLoS Comput Biol ; 17(10): e1009507, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34644292

RESUMO

In the early visual system, suppression occurs between neurons representing different stimulus properties. This includes features such as orientation (cross-orientation suppression), eye-of-origin (interocular suppression) and spatial location (surround suppression), which are thought to involve distinct anatomical pathways. We asked if these separate routes to suppression can be differentiated by their pattern of gain control on the contrast response function measured in human participants using steady-state electroencephalography. Changes in contrast gain shift the contrast response function laterally, whereas changes in response gain scale the function vertically. We used a Bayesian hierarchical model to summarise the evidence for each type of gain control. A computational meta-analysis of 16 previous studies found the most evidence for contrast gain effects with overlaid masks, but no clear evidence favouring either response gain or contrast gain for other mask types. We then conducted two new experiments, comparing suppression from four mask types (monocular and dichoptic overlay masks, and aligned and orthogonal surround masks) on responses to sine wave grating patches flickering at 5Hz. At the occipital pole, there was strong evidence for contrast gain effects in all four mask types at the first harmonic frequency (5Hz). Suppression generally became stronger at more lateral electrode sites, but there was little evidence of response gain effects. At the second harmonic frequency (10Hz) suppression was stronger overall, and involved both contrast and response gain effects. Although suppression from different mask types involves distinct anatomical pathways, gain control processes appear to serve a common purpose, which we suggest might be to suppress less reliable inputs.


Assuntos
Sensibilidades de Contraste/fisiologia , Mascaramento Perceptivo/fisiologia , Visão Binocular/fisiologia , Córtex Visual/fisiologia , Adulto , Teorema de Bayes , Biologia Computacional , Eletroencefalografia , Humanos , Modelos Neurológicos
7.
eNeuro ; 8(3)2021.
Artigo em Inglês | MEDLINE | ID: mdl-33958374

RESUMO

Parkinson's disease (PD) is a progressive neurodegenerative disease that is typically diagnosed late in its progression. There is a need for biomarkers suitable for monitoring the disease progression at earlier stages to guide the development of novel neuroprotective therapies. One potential biomarker, α-synuclein, has been found in both the familial cases of PD, as well as the sporadic cases and is considered a key feature of PD. α-synuclein is naturally present in the retina, and it has been suggested that early symptoms of the visual system may be used as a biomarker for PD. Here, we use a viral vector to induce a unilateral expression of human wild-type α-synuclein in rats as a mechanistic model of protein aggregation in PD. We employed functional magnetic resonance imaging (fMRI) to investigate whether adeno-associated virus (AAV) mediated expression of human wild-type α-synuclein alter functional activity in the visual system. A total of 16 rats were injected with either AAV-α-synuclein (n = 7) or AAV-null (n = 9) in the substantia nigra pars compacta (SNc) of the left hemisphere. The expression of α-synuclein was validated by a motor assay and postmortem immunohistochemistry. Five months after the introduction of the AAV-vector, fMRI showed robust blood oxygen level-dependent (BOLD) responses to light stimulation in the visual systems of both control and AAV-α-synuclein animals. However, our results demonstrate that the expression of AAV-α-synuclein does not affect functional activation of the visual system. This negative finding suggests that fMRI-based read-outs of visual responses may not be a sensitive biomarker for PD.


Assuntos
Doenças Neurodegenerativas , alfa-Sinucleína , Animais , Dependovirus/genética , Modelos Animais de Doenças , Imageamento por Ressonância Magnética , Ratos , Roedores , alfa-Sinucleína/genética
8.
Neuroimage ; 230: 117780, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33503479

RESUMO

Even after conventional patching treatment, individuals with a history of amblyopia typically lack good stereo vision. This is often attributed to atypical suppression between the eyes, yet the specific mechanism is still unclear. Guided by computational models of binocular vision, we tested explicit predictions about how neural responses to contrast might differ in individuals with impaired binocular vision. Participants with a history of amblyopia (N = 25), and control participants with typical visual development (N = 19) took part in the study. Neural responses to different combinations of contrast in the left and right eyes, were measured using both electroencephalography (EEG) and functional magnetic resonance imaging (fMRI). Stimuli were sinusoidal gratings with a spatial frequency of 3c/deg, flickering at 4 Hz. In the fMRI experiment, we also ran population receptive field and retinotopic mapping sequences, and a phase-encoded localiser stimulus, to identify voxels in primary visual cortex (V1) sensitive to the main stimulus. Neural responses in both modalities increased monotonically with stimulus contrast. When measured with EEG, responses were attenuated in the weaker eye, consistent with a fixed tonic suppression of that eye. When measured with fMRI, a low contrast stimulus in the weaker eye substantially reduced the response to a high contrast stimulus in the stronger eye. This effect was stronger than when the stimulus-eye pairings were reversed, consistent with unbalanced dynamic suppression between the eyes. Measuring neural responses using different methods leads to different conclusions about visual differences in individuals with impaired binocular vision. Both of the atypical suppression effects may relate to binocular perceptual deficits, e.g. in stereopsis, and we anticipate that these measures could be informative for monitoring the progress of treatments aimed at recovering binocular vision.


Assuntos
Ambliopia/diagnóstico por imagem , Ambliopia/fisiopatologia , Eletroencefalografia/métodos , Imageamento por Ressonância Magnética/métodos , Estimulação Luminosa/métodos , Visão Binocular/fisiologia , Adulto , Potenciais Evocados Visuais/fisiologia , Feminino , Humanos , Masculino , Adulto Jovem
9.
Front Neurosci ; 14: 581706, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33362456

RESUMO

Two stereoscopic cues that underlie the perception of motion-in-depth (MID) are changes in retinal disparity over time (CD) and interocular velocity differences (IOVD). These cues have independent spatiotemporal sensitivity profiles, depend upon different low-level stimulus properties, and are potentially processed along separate cortical pathways. Here, we ask whether these MID cues code for different motion directions: do they give rise to discriminable patterns of neural signals, and is there evidence for their convergence onto a single "motion-in-depth" pathway? To answer this, we use a decoding algorithm to test whether, and when, patterns of electroencephalogram (EEG) signals measured from across the full scalp, generated in response to CD- and IOVD-isolating stimuli moving toward or away in depth can be distinguished. We find that both MID cue type and 3D-motion direction can be decoded at different points in the EEG timecourse and that direction decoding cannot be accounted for by static disparity information. Remarkably, we find evidence for late processing convergence: IOVD motion direction can be decoded relatively late in the timecourse based on a decoder trained on CD stimuli, and vice versa. We conclude that early CD and IOVD direction decoding performance is dependent upon fundamentally different low-level stimulus features, but that later stages of decoding performance may be driven by a central, shared pathway that is agnostic to these features. Overall, these data are the first to show that neural responses to CD and IOVD cues that move toward and away in depth can be decoded from EEG signals, and that different aspects of MID-cues contribute to decoding performance at different points along the EEG timecourse.

10.
Neuroscience ; 441: 131-141, 2020 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-32615234

RESUMO

Photoreceptors are light-sensitive cells in the retina converting visual stimuli into electrochemical signals. These signals are evaluated and interpreted in the visual pathway, a process referred to as visual processing. Phosphodiesterase type 5 and 6 (PDE5 and 6) are abundant enzymes in retinal vessels and notably photoreceptors where PDE6 is exclusively present. The effects of the PDE inhibitor sildenafil on the visual system, have been studied using electroretinography and a variety of clinical visual tasks. Here we evaluate effects of sildenafil administration by electrophysiological recordings of flash visual evoked potentials (VEPs) and steady-state visual evoked potentials (SSVEPs) from key regions in the rodent visual pathway. Progressive changes were investigated in female Sprague-Dawley rats at 10 timepoints from 30 min to 28 h after peroral administration of sildenafil (50 mg/kg). Sildenafil caused a significant reduction in the amplitude of VEPs in both visual cortex and superior colliculus, and a significant delay of the VEPs as demonstrated by increased latency of several VEP peaks. Also, sildenafil-treatment significantly reduced the signal-to-noise ratio of SSVEPs. The effects of sildenafil were dependent on the wavelength condition in both assays. Our results support the observation that while PDE6 is a key player in phototransduction, near full inhibition of PDE6 is not enough to abolish the complex process of visual processing. Taken together, VEPs and SSVEPs are effective in demonstrating progressive effects of drug-induced changes in visual processing in rats and as the same paradigms may be applied in humans, representing a promising tool for translational research.


Assuntos
Eletrorretinografia , Potenciais Evocados Visuais , Animais , Feminino , Ratos , Ratos Sprague-Dawley , Citrato de Sildenafila/farmacologia , Percepção Visual
11.
Sci Rep ; 10(1): 11869, 2020 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-32681050

RESUMO

Biomarkers suitable for early diagnosis and monitoring disease progression are the cornerstone of developing disease-modifying treatments for neurodegenerative diseases such as Parkinson's disease (PD). Besides motor complications, PD is also characterized by deficits in visual processing. Here, we investigate how virally-mediated overexpression of α-synuclein in the substantia nigra pars compacta impacts visual processing in a well-established rodent model of PD. After a unilateral injection of vector, human α-synuclein was detected in the striatum and superior colliculus (SC). In parallel, there was a significant delay in the latency of the transient VEPs from the affected side of the SC in late stages of the disease. Inhibition of leucine-rich repeat kinase using PFE360 failed to rescue the VEP delay and instead increased the latency of the VEP waveform. A support vector machine classifier accurately classified rats according to their `disease state' using frequency-domain data from steady-state visual evoked potentials (SSVEP). Overall, these findings indicate that the latency of the rodent VEP is sensitive to changes mediated by the increased expression of α-synuclein and especially when full overexpression is obtained, whereas the SSVEP facilitated detection of α-synuclein across reflects all stages of PD model progression.


Assuntos
Doença de Parkinson/etiologia , Doença de Parkinson/fisiopatologia , Percepção Visual , alfa-Sinucleína/genética , Animais , Biomarcadores , Dependovirus/genética , Modelos Animais de Doenças , Fenômenos Eletrofisiológicos , Potenciais Evocados Visuais , Feminino , Expressão Gênica , Vetores Genéticos/genética , Humanos , Imuno-Histoquímica , Aprendizado de Máquina , Camundongos Transgênicos , Ratos , Córtex Visual , alfa-Sinucleína/metabolismo
12.
Sci Rep ; 9(1): 17412, 2019 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-31758028

RESUMO

When we track an object moving in depth, our eyes rotate in opposite directions. This type of "disjunctive" eye movement is called horizontal vergence. The sensory control signals for vergence arise from multiple visual cues, two of which, changing binocular disparity (CD) and inter-ocular velocity differences (IOVD), are specifically binocular. While it is well known that the CD cue triggers horizontal vergence eye movements, the role of the IOVD cue has only recently been explored. To better understand the relative contribution of CD and IOVD cues in driving horizontal vergence, we recorded vergence eye movements from ten observers in response to four types of stimuli that isolated or combined the two cues to motion-in-depth, using stimulus conditions and CD/IOVD stimuli typical of behavioural motion-in-depth experiments. An analysis of the slopes of the vergence traces and the consistency of the directions of vergence and stimulus movements showed that under our conditions IOVD cues provided very little input to vergence mechanisms. The eye movements that did occur coinciding with the presentation of IOVD stimuli were likely not a response to stimulus motion, but a phoria initiated by the absence of a disparity signal.


Assuntos
Sinais (Psicologia) , Percepção de Profundidade , Movimentos Oculares , Percepção de Movimento , Visão Binocular , Feminino , Humanos , Masculino , Modelos Teóricos , Movimento (Física) , Estimulação Luminosa
13.
Proc Natl Acad Sci U S A ; 116(27): 13631-13640, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31209058

RESUMO

Motion in depth (MID) can be cued by high-resolution changes in binocular disparity over time (CD), and low-resolution interocular velocity differences (IOVD). Computational differences between these two mechanisms suggest that they may be implemented in visual pathways with different spatial and temporal resolutions. Here, we used fMRI to examine how achromatic and S-cone signals contribute to human MID perception. Both CD and IOVD stimuli evoked responses in a widespread network that included early visual areas, parts of the dorsal and ventral streams, and motion-selective area hMT+. Crucially, however, we measured an interaction between MID type and chromaticity. fMRI CD responses were largely driven by achromatic stimuli, but IOVD responses were better driven by isoluminant S-cone inputs. In our psychophysical experiments, when S-cone and achromatic stimuli were matched for perceived contrast, participants were equally sensitive to the MID in achromatic and S-cone IOVD stimuli. In comparison, they were relatively insensitive to S-cone CD. These findings provide evidence that MID mechanisms asymmetrically draw on information in precortical pathways. An early opponent motion signal optimally conveyed by the S-cone pathway may provide a substantial contribution to the IOVD mechanism.

14.
Neuroimage ; 184: 462-474, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30243956

RESUMO

Cells in the peripheral retina tend to have higher contrast sensitivity and respond at higher flicker frequencies than those closer to the fovea. Although this predicts increased behavioural temporal contrast sensitivity in the peripheral visual field, this effect is rarely observed in psychophysical experiments. It is unknown how temporal contrast sensitivity is represented across eccentricity within cortical visual field maps and whether such sensitivities reflect the response properties of retinal cells or psychophysical sensitivities. Here, we used functional magnetic resonance imaging (fMRI) to measure contrast sensitivity profiles at four temporal frequencies in five retinotopically-defined visual areas. We also measured population receptive field (pRF) parameters (polar angle, eccentricity, and size) in the same areas. Overall contrast sensitivity, independent of pRF parameters, peaked at 10 Hz in all visual areas. In V1, V2, V3, and V3a, peripherally-tuned voxels had higher contrast sensitivity at a high temporal frequency (20 Hz), while hV4 more closely reflected behavioural sensitivity profiles. We conclude that our data reflect a cortical representation of the increased peripheral temporal contrast sensitivity that is already present in the retina and that this bias must be compensated later in the cortical visual pathway.


Assuntos
Mapeamento Encefálico/métodos , Sensibilidades de Contraste/fisiologia , Imageamento por Ressonância Magnética/métodos , Córtex Visual/fisiologia , Vias Visuais/fisiologia , Adulto , Feminino , Humanos , Processamento de Imagem Assistida por Computador/métodos , Masculino
15.
Invest Ophthalmol Vis Sci ; 59(11): 4375-4383, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30193309

RESUMO

Purpose: Two binocular sources of information serve motion-in-depth (MID) perception: changes in disparity over time (CD), and interocular velocity differences (IOVD). While CD requires the computation of small spatial disparities, IOVD could be computed from a much lower-resolution signal. IOVD signals therefore might still be available under conditions of binocular vision impairment (BVI) with limited or no stereopsis, for example, amblyopia. Methods: Sensitivity to CD and IOVD was measured in adults who had undergone therapy to correct optical misalignment or amblyopia in childhood (n = 16), as well as normal vision controls with good stereoacuity (n = 8). Observers discriminated the interval containing a smoothly oscillating MID "test" stimulus from a "control" stimulus in a two-interval forced choice paradigm. Results: Of the BVI observers with no static stereoacuity (n = 9), one displayed evidence for sensitivity to IOVD only, while there was otherwise no sensitivity for either CD or IOVD in the group. Generally, BVI observers with measurable stereoacuity (n = 7) displayed a pattern resembling the control group: showing a similar sensitivity for both cues. A neutral density filter placed in front of the fixing eye in a subset of BVI observers did not improve performance. Conclusions: In one BVI observer there was preserved sensitivity to IOVD but not CD, though overall only those BVI observers with at least gross stereopsis were able to detect disparity- or velocity-based cues to MID. The results imply that these logically distinct information sources are somehow coupled, and in some cases BVI observers with no stereopsis may still retain sensitivity to IOVD.


Assuntos
Ambliopia/fisiopatologia , Sinais (Psicologia) , Percepção de Profundidade/fisiologia , Percepção de Movimento/fisiologia , Disparidade Visual/fisiologia , Visão Binocular/fisiologia , Baixa Visão/fisiopatologia , Adolescente , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Sensibilidade e Especificidade , Acuidade Visual , Adulto Jovem
16.
Hum Brain Mapp ; 39(10): 3813-3826, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29968956

RESUMO

Symmetry is effortlessly perceived by humans across changes in viewing geometry. Here, we re-examined the network subserving symmetry processing in the context of up-to-date retinotopic definitions of visual areas. Responses in object selective cortex, as defined by functional localizers, were also examined. We further examined responses to both frontoparallel and slanted symmetry while manipulating attention both toward and away from symmetry. Symmetry-specific responses first emerge in V3 and continue across all downstream areas examined. Of the retinotopic areas, ventral occipital VO1 showed the strongest symmetry response, which was similar in magnitude to the responses observed in object selective cortex. Neural responses were found to increase with both the coherence and folds of symmetry. Compared to passive viewing, drawing attention to symmetry generally increased neural responses and the correspondence of these neural responses with psychophysical performance. Examining symmetry on the slanted plane found responses to again emerge in V3, continue through downstream visual cortex, and be strongest in VO1 and LOB. Both slanted and frontoparallel symmetry evoked similar activity when participants performed a symmetry-related task. However, when a symmetry-unrelated task was performed, fMRI responses to slanted symmetry were reduced relative to their frontoparallel counterparts. These task-related changes provide a neural signature that suggests slant has to be computed ahead of symmetry being appropriately extracted, known as the "normalization" account of symmetry processing. Specifically, our results suggest that normalization occurs naturally when attention is directed toward symmetry and orientation, but becomes interrupted when attention is directed away from these features.


Assuntos
Mapeamento Encefálico/métodos , Reconhecimento Visual de Modelos/fisiologia , Percepção Espacial/fisiologia , Córtex Visual/fisiologia , Adulto , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Córtex Visual/diagnóstico por imagem , Adulto Jovem
17.
J Neurosci ; 38(12): 3050-3059, 2018 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-29463642

RESUMO

Most of our knowledge about vision comes from experiments in which stimuli are presented to immobile human subjects or animals. In the case of human subjects, movement during psychophysical, electrophysiological, or neuroimaging experiments is considered to be a source of noise to be eliminated. Animals used in visual neuroscience experiments are typically restrained and, in many cases, anesthetized. In reality, however, vision is often used to guide the motion of awake, ambulating organisms. Recent work in mice has shown that locomotion elevates visual neuronal response amplitudes (Niell and Stryker, 2010; Erisken et al., 2014; Fu et al., 2014; Lee et al., 2014; Mineault et al., 2016) and reduces long-range gain control (Ayaz et al., 2013). Here, we used both psychophysics and steady-state electrophysiology to investigate whether similar effects of locomotion on early visual processing can be measured in humans. Our psychophysical results show that brisk walking has little effect on subjects' ability to detect briefly presented contrast changes and that co-oriented flankers are, if anything, more effective masks when subjects are walking. Our electrophysiological data were consistent with the psychophysics indicating no increase in stimulus-driven neuronal responses while walking and no reduction in surround suppression. In summary, we have found evidence that early contrast processing is altered by locomotion in humans but in a manner that differs from that reported in mice. The effects of locomotion on very low-level visual processing may differ on a species-by-species basis and may reflect important differences in the levels of arousal associated with locomotion.SIGNIFICANCE STATEMENT Mice are the current model of choice for studying low-level visual processing. Recent studies have shown that mouse visual cortex is modulated by behavioral state: primary visual cortex neurons in locomoting mice tend to be more sensitive and less influenced by long-range gain control. Here, we tested these effects in humans by measuring psychophysical detection thresholds and electroencephalography (EEG) responses while subjects walked on a treadmill. We found no evidence of increased contrast sensitivity or reduced surround suppression in walking humans. Our data show that fundamental measurements of early visual processing differ between humans and mice and this has important implications for recent work on the links among arousal, behavior, and vision in these two species.


Assuntos
Sensibilidades de Contraste/fisiologia , Caminhada/fisiologia , Adulto , Feminino , Humanos , Locomoção/fisiologia , Masculino , Adulto Jovem
19.
Vision (Basel) ; 2(4)2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31735904

RESUMO

Motion-in-depth can be detected by using two different types of binocular cues: change of disparity (CD) and inter-ocular velocity differences (IOVD). To investigate the underlying detection mechanisms, stimuli can be constructed that isolate these cues or contain both (FULL cue). Two different methods to isolate the IOVD cue can be employed: anti-correlated (aIOVD) and de-correlated (dIOVD) motion signals. While both types of stimuli have been used in studies investigating the perception of motion-in-depth, for the first time, we explore whether both stimuli isolate the same mechanism and how they differ in their relative efficacy. Here, we set out to directly compare aIOVD and dIOVD sensitivity by measuring motion coherence thresholds. In accordance with previous results by Czuba et al. (2010), we found that motion coherence thresholds were similar for aIOVD and FULL cue stimuli for most participants. Thresholds for dIOVD stimuli, however, differed consistently from thresholds for the two other cues, suggesting that aIOVD and dIOVD stimuli could be driving different visual mechanisms.

20.
Proc Biol Sci ; 285(1893): 20182255, 2018 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-30963913

RESUMO

There is increasing evidence for a strong genetic basis for autism, with many genetic models being developed in an attempt to replicate autistic symptoms in animals. However, current animal behaviour paradigms rarely match the social and cognitive behaviours exhibited by autistic individuals. Here, we instead assay another functional domain-sensory processing-known to be affected in autism to test a novel genetic autism model in Drosophila melanogaster. We show similar visual response alterations and a similar development trajectory in Nhe3 mutant flies (total n = 72) and in autistic human participants (total n = 154). We report a dissociation between first- and second-order electrophysiological visual responses to steady-state stimulation in adult mutant fruit flies that is strikingly similar to the response pattern in human adults with ASD as well as that of a large sample of neurotypical individuals with high numbers of autistic traits. We explain this as a genetically driven, selective signalling alteration in transient visual dynamics. In contrast to adults, autistic children show a decrease in the first-order response that is matched by the fruit fly model, suggesting that a compensatory change in processing occurs during development. Our results provide the first animal model of autism comprising a differential developmental phenotype in visual processing.


Assuntos
Transtorno Autístico/patologia , Transtorno Autístico/fisiopatologia , Drosophila melanogaster , Animais , Modelos Animais de Doenças , Drosophila melanogaster/anatomia & histologia , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/fisiologia , Modelos Genéticos , Percepção Visual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA