Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Acta Neuropathol Commun ; 12(1): 23, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38331947

RESUMO

Glaucoma is one of the leading causes of irreversible blindness worldwide and vision loss in the disease results from the deterioration of retinal ganglion cells (RGC) and their axons. Metabolic dysfunction of RGC plays a significant role in the onset and progression of the disease in both human patients and rodent models, highlighting the need to better define the mechanisms regulating cellular energy metabolism in glaucoma. This study sought to determine if Sarm1, a gene involved in axonal degeneration and NAD+ metabolism, contributes to glaucomatous RGC loss in a mouse model with chronic elevated intraocular pressure (IOP). Our data demonstrate that after 16 weeks of elevated IOP, Sarm1 knockout (KO) mice retain significantly more RGC than control animals. Sarm1 KO mice also performed significantly better when compared to control mice during optomotor testing, indicating that visual function is preserved in this group. Our findings also indicate that Sarm1 KO mice display mild ocular developmental abnormalities, including reduced optic nerve axon diameter and lower visual acuity than controls. Finally, we present data to indicate that SARM1 expression in the optic nerve is most prominently associated with oligodendrocytes. Taken together, these data suggest that attenuating Sarm1 activity through gene therapy, pharmacologic inhibition, or NAD+ supplementation, may be a novel therapeutic approach for patients with glaucoma.


Assuntos
Glaucoma , Células Ganglionares da Retina , Humanos , Camundongos , Animais , Células Ganglionares da Retina/metabolismo , Pressão Intraocular , NAD/metabolismo , Glaucoma/genética , Nervo Óptico/metabolismo , Axônios/metabolismo , Camundongos Knockout , Modelos Animais de Doenças , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Proteínas do Domínio Armadillo/genética , Proteínas do Domínio Armadillo/metabolismo
2.
Stem Cells ; 40(6): 592-604, 2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35263762

RESUMO

The development of the vertebrate retina relies on complex regulatory mechanisms to achieve its characteristic layered morphology containing multiple neuronal cell types. While connexin 43 (CX43) is not expressed by mature retinal neurons, mutations in its gene GJA1 are associated with microphthalmia and low vision in patients. To delineate how lack of CX43 affects retinal development, GJA1 was disrupted in human induced pluripotent stem cells (hiPSCs) (GJA1-/-) using CRISPR/Cas9 editing, and these were subsequently differentiated into retinal organoids. GJA1-/- hiPSCs do not display defects in self-renewal and pluripotency, but the resulting organoids are smaller with a thinner neural retina and decreased abundance of many retinal cell types. CX43-deficient organoids express lower levels of the neural marker PAX6 and the retinal progenitor cell (RPC) markers PAX6, SIX3, and SIX6. Conversely, expression of the early neuroectoderm markers SOX1 and SOX2 remains high in GJA1-/- organoids throughout their development. The lack of CX43 results in an increased population of CHX10-positive RPCs that are smaller, disorganized, do not become polarized, and possess a limited ability to commit to retinal fate specification. Our data indicate that lack of CX43 causes a developmental arrest in RPCs that subsequently leads to pan-retinal defects and stunted ocular growth.


Assuntos
Células-Tronco Pluripotentes Induzidas , Organoides , Diferenciação Celular/genética , Conexina 43/genética , Conexina 43/metabolismo , Humanos , Retina
3.
Biomolecules ; 12(2)2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35204782

RESUMO

Neuroinflammation significantly contributes to the pathophysiology of several neurodegenerative diseases. This is also the case in glaucoma and may be a reason why many patients suffer from progressive vision loss despite maximal reduction in intraocular pressure. Pioglitazone is an agonist of the peroxisome proliferator-activated receptor gamma (PPARγ) whose pleiotrophic activities include modulation of cellular energy metabolism and reduction in inflammation. In this study we employed the DBA2/J mouse model of glaucoma with chronically elevated intraocular pressure to investigate whether oral low-dose pioglitazone treatment preserves retinal ganglion cell (RGC) survival. We then used an inducible glaucoma model in C57BL/6J mice to determine visual function, pattern electroretinographs, and tracking of optokinetic reflex. Our findings demonstrate that pioglitazone treatment does significantly protect RGCs and prevents axonal degeneration in the glaucomatous retina. Furthermore, treatment preserves and partially reverses vision loss in spite of continuously elevated intraocular pressure. These data suggest that pioglitazone may provide treatment benefits for those glaucoma patients experiencing continued vision loss.


Assuntos
Glaucoma , Animais , Glaucoma/metabolismo , Humanos , Pressão Intraocular , Camundongos , Camundongos Endogâmicos C57BL , Pioglitazona/farmacologia , Pioglitazona/uso terapêutico , Células Ganglionares da Retina/metabolismo
4.
Int J Mol Sci ; 22(14)2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34299211

RESUMO

Glaucoma is a leading cause of irreversible blindness worldwide, and increased intraocular pressure (IOP) is a major risk factor. We aimed to determine if early functional and molecular differences in the glaucomatous retina manifest before significant retinal ganglion cell (RGC) loss is apparent. Adenoviral vectors expressing a pathogenic form of myocilin (Ad5.MYOC) were used to induce IOP elevation in C57BL/6 mice. IOP and pattern electroretinograms (pERG) were recorded, and retinas were prepared for RNA sequencing, immunohistochemistry, or to determine RGC loss. Ocular injection of Ad5.MYOC leads to reliable IOP elevation, resulting in significant loss of RGC after nine weeks. A significant decrease in the pERG amplitude was evident in eyes three weeks after IOP elevation. Retinal gene expression analysis revealed increased expression for 291 genes related to complement cascade, inflammation, and antigen presentation in hypertensive eyes. Decreased expression was found for 378 genes associated with the γ-aminobutyric acid (GABA)ergic and glutamatergic systems and axon guidance. These data suggest that early functional changes in RGC might be due to reduced GABAA receptor signaling and neuroinflammation that precedes RGC loss in this glaucoma model. These initial changes may offer new targets for early detection of glaucoma and the development of new interventions.


Assuntos
Neurônios GABAérgicos/metabolismo , Glaucoma/patologia , Células Ganglionares da Retina/patologia , Ácido gama-Aminobutírico/metabolismo , Animais , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Modelos Animais de Doenças , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Feminino , Neurônios GABAérgicos/patologia , Regulação da Expressão Gênica , Glaucoma/etiologia , Glaucoma/metabolismo , Glicoproteínas/genética , Glicoproteínas/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Pressão Intraocular , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células Ganglionares da Retina/metabolismo
5.
Exp Eye Res ; 205: 108494, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33596442

RESUMO

The cells residing in the trabecular meshwork (TM) fulfill important roles in the maintenance of the tissue and the regulation of intraocular pressure (IOP). Here we examine (i) TM cell distribution along the circumference of the human eye, (ii) differences in TM cell density between regions of high and low outflow, and (iii) whether TM cell distribution in eyes from donors with primary open angle glaucoma (POAG) differs from that of normal eyes. Toward this end, the TM cell density from 12 radial segments around the circumference of the TM of human donor eyes (n = 6) with and without POAG was determined using histochemical methods. Areas of high, median, and low outflow were mapped in a different set of human donor eyes that were perfused in organ culture, and TM cell densities in these areas were determined in normal (n = 11) and POAG eyes (n = 6). Our analysis of 1380 tissue sections taken from the first set of six eyes shows that the average TM cell density of these six eyes ranges from 15.5 to 23.7 cells/100 µm and is negatively correlated to the maximum IOP recorded for each donor eye (R2 = 0.91). Considerable differences in TM cell density exist among sections taken from the same segment of an individual eye (average standard deviation = 2.35 cells/100 µm). Less variability is observed among the segment averages across the eye's circumference (average standard deviation = 1.03 cells/100 µm). Variations in cell density are similar between normal and POAG eyes and are not correlated with the anatomic position of examined segments (p = 0.745). The analysis of the second set of eyes shows that TM regions of high outflow display a TM cell density similar to regions of median or low outflow in both normal and POAG eyes. Together these findings demonstrate that (i) statistically significant differences in TM cell density exist along the circumference of each eye (ii) TM cellularity is not correlated with segmental flow and (iii) eyes with POAG, while displaying reduced TM cellularity, do not exhibit higher TM cell variability than normal eyes. Finally, statistical analysis of sections and segments indicates that measurements from 12 sections taken from 2 segments provide a reliable and cost-effective estimate of a human eye's TM cell density.


Assuntos
Glaucoma de Ângulo Aberto/patologia , Malha Trabecular/patologia , Idoso , Idoso de 80 Anos ou mais , Humor Aquoso/fisiologia , Contagem de Células , Feminino , Humanos , Pressão Intraocular , Masculino , Pessoa de Meia-Idade , Doadores de Tecidos
6.
Sci Rep ; 8(1): 523, 2018 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-29323267

RESUMO

Adipose tissue dysfunction is critical to the development of type II diabetes and other metabolic diseases. While monolayer cell culture has been useful for studying fat biology, 2D culture often does not reflect the complexity of fat tissue. Animal models are also problematic in that they are expensive, time consuming, and may not completely recapitulate human biology because of species variation. To address these problems, we have developed a scaffold-free method to generate 3D adipose spheroids from primary or immortal human or mouse pre-adipocytes. Pre-adipocytes self-organize into spheroids in hanging drops and upon transfer to low attachment plates, can be maintained in long-term cultures. Upon exposure to differentiation cues, the cells mature into adipocytes, accumulating large lipid droplets that expand with time. The 3D spheroids express and secrete higher levels of adiponectin compared to 2D culture and respond to stress, either culture-related or toxin-associated, by secreting pro-inflammatory adipokines. In addition, 3D spheroids derived from brown adipose tissue (BAT) retain expression of BAT markers better than 2D cultures derived from the same tissue. Thus, this model can be used to study both the maturation of pre-adipocytes or the function of mature adipocytes in a 3D culture environment.


Assuntos
Adipócitos/metabolismo , Descoberta de Drogas , Esferoides Celulares/metabolismo , Adipócitos/citologia , Adipocinas/metabolismo , Adiponectina/metabolismo , Tecido Adiposo Marrom/citologia , Tecido Adiposo Marrom/metabolismo , Animais , Técnicas de Cultura de Células , Diferenciação Celular , Células Cultivadas , Citocinas/metabolismo , Regulação para Baixo/efeitos dos fármacos , Humanos , Gotículas Lipídicas/metabolismo , Camundongos , Esferoides Celulares/citologia , Esferoides Celulares/efeitos dos fármacos , Toxinas Biológicas/farmacologia , Regulação para Cima/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA