Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
EJNMMI Phys ; 11(1): 37, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38647924

RESUMO

PURPOSE: Bayesian penalised likelihood (BPL) reconstruction, which incorporates point-spread-function (PSF) correction, provides higher signal-to-noise ratios and more accurate quantitation than conventional ordered subset expectation maximization (OSEM) reconstruction. However, applying PSF correction to brain PET imaging is controversial due to Gibbs artefacts that manifest as unpredicted cortical uptake enhancement. The present study aimed to validate whether BPL without PSF would be useful for amyloid PET imaging. METHODS: Images were acquired from Hoffman 3D brain and cylindrical phantoms for phantom study and 71 patients administered with [18F]flutemetamol in clinical study using a Discovery MI. All images were reconstructed using OSEM, BPL with PSF correction, and BPL without PSF correction. Count profile, %contrast, recovery coefficients (RCs), and image noise were calculated from the images acquired from the phantoms. Amyloid ß deposition in patients was visually assessed by two physicians and quantified based on the standardised uptake value ratio (SUVR). RESULTS: The overestimated radioactivity in profile curves was eliminated using BPL without PSF correction. The %contrast and image noise decreased with increasing ß values in phantom images. Image quality and RCs were better using BPL with, than without PSF correction or OSEM. An optimal ß value of 600 was determined for BPL without PSF correction. Visual evaluation almost agreed perfectly (κ = 0.91-0.97), without depending on reconstruction methods. Composite SUVRs did not significantly differ between reconstruction methods. CONCLUSION: Gibbs artefacts disappeared from phantom images using the BPL without PSF correction. Visual and quantitative evaluation of [18F]flutemetamol imaging was independent of the reconstruction method. The BPL without PSF correction could be the standard reconstruction method for amyloid PET imaging, despite being qualitatively inferior to BPL with PSF correction for [18F]flutemetamol amyloid PET imaging.

2.
Brain Sci ; 14(4)2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38672055

RESUMO

BACKGROUND: Standard methods for deriving Centiloid scales from amyloid PET images are time-consuming and require considerable expert knowledge. We aimed to develop a deep learning method of automating Centiloid scale calculations from amyloid PET images with 11C-Pittsburgh Compound-B (PiB) tracer and assess its applicability to 18F-labeled tracers without retraining. METHODS: We trained models on 231 11C-PiB amyloid PET images using a 50-layer 3D ResNet architecture. The models predicted the Centiloid scale, and accuracy was assessed using mean absolute error (MAE), linear regression analysis, and Bland-Altman plots. RESULTS: The MAEs for Alzheimer's disease (AD) and young controls (YC) were 8.54 and 2.61, respectively, using 11C-PiB, and 8.66 and 3.56, respectively, using 18F-NAV4694. The MAEs for AD and YC were higher with 18F-florbetaben (39.8 and 7.13, respectively) and 18F-florbetapir (40.5 and 12.4, respectively), and the error rate was moderate for 18F-flutemetamol (21.3 and 4.03, respectively). Linear regression yielded a slope of 1.00, intercept of 1.26, and R2 of 0.956, with a mean bias of -1.31 in the Centiloid scale prediction. CONCLUSIONS: We propose a deep learning means of directly predicting the Centiloid scale from amyloid PET images in a native space. Transferring the model trained on 11C-PiB directly to 18F-NAV4694 without retraining was feasible.

3.
Ann Nucl Med ; 38(5): 400-407, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38466549

RESUMO

OBJECTIVE: The uptake of [11C]methionine in positron emission tomography (PET) imaging overlapped in earlier images of tumors. Bayesian penalized likelihood (BPL) reconstruction increases the quantitative values of tumors compared with conventional ordered subset-expectation maximization (OSEM). The present study aimed to grade glioma malignancy based on the new WHO 2021 classification using [11C]methionine PET images reconstructed using BPL. METHODS: We categorized 32 gliomas in 28 patients as grades 2/3 (n = 15) and 4 (n = 17) based on the WHO 2021 classification. All [11C]methionine images were reconstructed using OSEM + time-of-flight (TOF) and BPL + TOF (ß = 200). Maximum standardized uptake value (SUVmax) and tumor-to-normal tissue ratio (T/Nmax) were measured at each lesion. RESULTS: The mean SUVmax was 4.65 and 4.93 in grade 2/3 and 6.38 and 7.11 in grade 4, and the mean T/Nmax was 7.08 and 7.22 in grade 2/3 and 9.30 and 10.19 in grade 4 for OSEM and BPL, respectively. The BPL significantly increased these values in grade 4 gliomas. The area under the receiver operator characteristic (ROC) curve (AUC) for SUVmax was the highest (0.792) using BPL. CONCLUSIONS: The BPL increased mean SUVmax and mean T/Nmax in lesions with higher contrast such as grade 4 glioma. The discrimination power between grades 2/3 and 4 in SUVmax was also increased using [11C]methionine PET images reconstructed with BPL.


Assuntos
Glioma , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Humanos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Fluordesoxiglucose F18 , Metionina , Teorema de Bayes , Processamento de Imagem Assistida por Computador/métodos , Tomografia por Emissão de Pósitrons/métodos , Racemetionina , Glioma/diagnóstico por imagem , Algoritmos , Organização Mundial da Saúde
4.
Ann Nucl Med ; 37(12): 665-674, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37796394

RESUMO

OBJECTIVES: MotionFree® (AMF) is a data-driven respiratory gating (DDG) algorithm for image processing that has recently been introduced into clinical practice. The present study aimed to verify the accuracy of respiratory waveform and the effects of normal and irregular respiratory motions using AMF with the DDG algorithm. METHODS: We used a NEMA IEC body phantom comprising six spheres (37-, 28-, 22-, 17-, 13-, and 10 mm diameter) containing 18F. The sphere-to-background ratio was 4:1 (21.2 and 5.3 kBq/mL). We acquired PET/CT images from a stationary or moving phantom placed on a custom-designed motion platform. Respiratory motions were reproduced based on normal (sinusoidal or expiratory-paused waveforms) and irregular (changed amplitude or shifted baseline waveforms) movements. The "width" parameters in AMF were set at 10-60% and extracted data during the expiratory phases of each waveform. We verified the accuracy of the derived waveforms by comparing those input from the motion platform and output determined using AMF. Quantitative accuracy was evaluated as recovery coefficients (RCs), improvement rate, and %change that were calculated based on sphere diameter or width. We evaluated statistical differences in activity concentrations of each sphere between normal and irregular waveforms. RESULTS: Respiratory waveforms derived from AMF were almost identical to the input waveforms on the motion platform. Although the RCs in each sphere for expiratory-paused and ideal stationary waveforms were almost identical, RCs except the expiratory-paused waveform were lower than those for the stationary waveform. The improvement rate decreased more for the irregular, than the normal waveforms with AMF in smaller spheres. The %change was improved by decreasing the width of waveforms with a shifted baseline. Activity concentrations significantly differed between normal waveforms and those with a shifted baseline in spheres < 28 mm. CONCLUSIONS: The PET images using AMF with the DDG algorithm provided the precise waveform of respiratory motions and the improvement of quantitative accuracy in the four types of respiratory waveforms. The improvement rate was the most obvious in expiratory-paused waveforms, and the most subtle in those with a shifted baseline. Optimizing the width parameter in irregular waveform will benefit patients who breathe like the waveform with the shifted baseline.


Assuntos
Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Tomografia por Emissão de Pósitrons , Humanos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Tomografia por Emissão de Pósitrons/métodos , Processamento de Imagem Assistida por Computador/métodos , Movimento , Algoritmos , Imagens de Fantasmas
5.
Ann Nucl Med ; 37(9): 494-503, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37243882

RESUMO

OBJECTIVE: Tau positron emission tomography (PET) imaging is a recently developed non-invasive tool that can detect the density and extension of tau neurofibrillary tangles. Tau PET tracers have been validated to harmonize and accelerate their development and implementation in clinical practice. Whereas standard protocols including injected dose, uptake time, and duration have been determined for tau PET tracers, reconstruction parameters have not been standardized. The present study conducted phantom experiments based on tau pathology to standardize quantitative tau PET imaging parameters and optimize reconstruction conditions of PET scanners at four Japanese sites according to the results of phantom experiments. METHODS: The activity of 4.0 and 2.0 kBq/mL for Hoffman 3D brain and cylindrical phantoms, respectively, was estimated from published studies of brain activity using [18F]flortaucipir, [18F]THK5351, and [18F]MK6240. We developed an original tau-specific volume of interest template for the brain based on pathophysiological tau distribution in the brain defined as Braak stages. We acquired brain and cylindrical phantom images using four PET scanners. Iteration numbers were determined as contrast and recover coefficients (RCs) in gray (GM) and white (WM) matter, and the magnitude of the Gaussian filter was determined from image noise. RESULTS: Contrast and RC converged at ≥ 4 iterations, the error rates of RC for GM and WM were < 15% and 1%, respectively, and noise was < 10% in Gaussian filters of 2-4 mm in images acquired using the four scanners. Optimizing the reconstruction conditions for phantom tau PET images acquired by each scanner improved contrast and image noise. CONCLUSIONS: The phantom activity was comprehensive for first- and second-generation tau PET tracers. The mid-range activity that we determined could be applied to later tau PET tracers. We propose an analytical tau-specific VOI template based on tau pathophysiological changes in patients with AD to standardize tau PET imaging. Phantom images reconstructed under the optimized conditions for tau PET imaging achieved excellent image quality and quantitative accuracy.


Assuntos
Encéfalo , Tomografia por Emissão de Pósitrons , Humanos , Tomografia por Emissão de Pósitrons/métodos , Encéfalo/diagnóstico por imagem , Imagens de Fantasmas , Padrões de Referência
7.
EJNMMI Phys ; 10(1): 4, 2023 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-36681994

RESUMO

BACKGROUND: The Bayesian penalized likelihood PET reconstruction (BPL) algorithm, Q.Clear (GE Healthcare), has recently been clinically applied to clinical image reconstruction. The BPL includes a relative difference penalty (RDP) as a penalty function. The ß value that controls the behavior of RDP determines the global strength of noise suppression, whereas the γ factor in RDP controls the degree of edge preservation. The present study aimed to assess the effects of various γ factors in RDP on the ability to detect sub-centimeter lesions. METHODS: All PET data were acquired for 10 min using a Discovery MI PET/CT system (GE Healthcare). We used a NEMA IEC body phantom containing spheres with inner diameters of 10, 13, 17, 22, 28 and 37 mm and 4.0, 5.0, 6.2, 7.9, 10 and 13 mm. The target-to-background ratio of the phantom was 4:1, and the background activity concentration was 5.3 kBq/mL. We also evaluated cold spheres containing only non-radioactive water with the same background activity concentration. All images were reconstructed using BPL + time of flight (TOF). The ranges of ß values and γ factors in BPL were 50-600 and 2-20, respectively. We reconstructed PET images using the Duetto toolbox for MATLAB software. We calculated the % hot contrast recovery coefficient (CRChot) of each hot sphere, the cold CRC (CRCcold) of each cold sphere, the background variability (BV) and residual lung error (LE). We measured the full width at half maximum (FWHM) of the micro hollow hot spheres ≤ 13 mm to assess spatial resolution on the reconstructed PET images. RESULTS: The CRChot and CRCcold for different ß values and γ factors depended on the size of the small spheres. The CRChot, CRCcold and BV increased along with the γ factor. A 6.2-mm hot sphere was obvious in BPL as lower ß values and higher γ factors, whereas γ factors ≥ 10 resulted in images with increased background noise. The FWHM became smaller when the γ factor increased. CONCLUSION: High and low γ factors, respectively, preserved the edges of reconstructed PET images and promoted image smoothing. The BPL with a γ factor above the default value in Q.Clear (γ factor = 2) generated high-resolution PET images, although image noise slightly diverged. Optimizing the ß value and the γ factor in BPL enabled the detection of lesions ≤ 6.2 mm.

8.
Radiol Phys Technol ; 16(1): 49-56, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36622563

RESUMO

Since the early 2000s, many types of positron emission tomography (PET) scanners dedicated to breast imaging for the diagnosis of breast cancer have been introduced. However, conventional performance evaluation methods developed for whole-body PET scanners cannot be used for such devices. In this study, we developed phantom tools for evaluating the quantitative accuracy of positron emission mammography (PEM) and dedicated-breast PET (dbPET) scanners using novel traceable point-like 68Ge/68 Ga sources. The PEM phantom consisted of an acrylic cube (100 × 100 × 40 mm) and three point-like sources. The dbPET phantom comprised an acrylic cylinder (ø100 × 100 mm) and five point-like sources. These phantoms were used for evaluating the fundamental responses of clinical PEM and dbPET scanners to point-like inputs in a medium. The results showed that reasonable recovery values were obtained based on region-of-interest analyses of the reconstructed images. The developed phantoms using traceable 68Ge/68 Ga point-like sources were useful for evaluating the physical characteristics of PEM and dbPET scanners. Thus, they offer a practical, reliable, and universal measurement scheme for evaluating various types of PET scanners using common sets of sealed sources.


Assuntos
Elétrons , Radioisótopos de Gálio , Humanos , Tomografia por Emissão de Pósitrons , Mama , Mamografia , Imagens de Fantasmas
9.
J Appl Clin Med Phys ; 23(8): e13713, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35775691

RESUMO

The most recent statement published by the International Commission on Radiological Protection describes a reduction in the maximum allowable occupational eye lens dose from 150 to 20 mSv/year (averaged over 5-year periods). Exposing the eye lens to radiation is a concern for nuclear medicine staff who handle radionuclide tracers with various levels of photon energy. This study aimed to define the optimal dosimeter and means of measuring the amount of exposure to which the eye lens is exposed during a routine nuclear medicine practice. A RANDO human phantom attached to Glass Badge and Luminess Badge for body or neck, DOSIRIS and VISION for eyes, and nanoDot for body, neck, and eyes was exposed to 99m Tc, 123 I, and 18 F radionuclides. Sealed syringe sources of each radionuclide were positioned 30 cm from the abdomen of the phantom. Estimated exposure based on measurement conditions (i.e., air kerma rate constants, conversion coefficient, distance, activity, and exposure time) was compared measured dose equivalent of each dosimeter. Differences in body, neck, and eye lens dosimeters were statistically analyzed. The 10-mm dose equivalent significantly differed between the Glass Badge and Luminess Badge for the neck, but these were almost equivalent at the body. The 0.07-mm dose equivalent for the nanoDot dosimeters was greatly overestimated compared to the estimated exposure of 99m Tc and 123 I radionuclides. Measured dose equivalents of exposure significantly differed between the body and eye lens dosimeters with respect to 18 F. Although accurately measuring radiation exposure to the eye lenses of nuclear medicine staff is conventionally monitored using dosimeters worn on the chest or abdomen, eye lens dosimeters that provide a 3-mm dose equivalent near the eye would be a more reliable means of assessing radiation doses in the mixed radiation environment of nuclear medicine.


Assuntos
Cristalino , Medicina Nuclear , Exposição Ocupacional , Exposição à Radiação , Proteção Radiológica , Humanos , Exposição Ocupacional/análise , Exposição Ocupacional/prevenção & controle , Doses de Radiação , Exposição à Radiação/análise , Exposição à Radiação/prevenção & controle , Proteção Radiológica/métodos , Radioisótopos
10.
Front Aging Neurosci ; 14: 847094, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35517046

RESUMO

Neurodegenerative changes in the preclinical stage of Alzheimer's disease (AD) have recently been the focus of attention because they may present a range of treatment opportunities. A total of 134 elderly volunteers who lived in a local community were investigated and grouped into preclinical and mild cognitive impairment stages according to the Clinical Dementia Rating test; we also estimated amyloid deposition in the brain using positron emission tomography (PET). A significant interaction between clinical stage and amyloid PET positivity on cerebral atrophy was observed in the bilateral parietal lobe, parahippocampal gyri, hippocampus, fusiform gyrus, and right superior and middle temporal gyri, as previously reported. Early AD-specific voxel of interest (VOI) analysis was also applied and averaged Z-scores in the right, left, bilateral, and right minus left medial temporal early AD specific area were computed. We defined these averaged Z-scores in the right, left, bilateral, and right minus left early AD specific VOI in medial temporal area as R-MedT-Atrophy-score, L-MedT-Atrophy-score, Bil-MedT-Atrophy-score, and R_L-MedT-Atrophy-score, respectively. It revealed that the R_L-MedT-Atrophy-scores were significantly larger in the amyloid-positive than in the amyloid-negative cognitively normal (CN) elderly group, that is, the right medial temporal areas were smaller than left in amyloid positive CN group and these left-right differences were significantly larger in amyloid positive than amyloid negative CN elderly group. The L-MedT-Atrophy-score was slightly larger (p = 0.073), that is, the left medial temporal area was smaller in the amyloid-negative CN group than in the amyloid-positive CN group. Conclusively, the left medial temporal area could be larger in CN participants with amyloid deposition than in those without amyloid deposition. The area under the receiver operating characteristic curve for differentiating amyloid positivity among CN participants using the R_L-MedT-Atrophy-scores was 0.73; the sensitivity and specificity were 0.828 and 0.606, respectively. Although not significant, a negative correlation was observed between the composite cerebral standardized uptake value ratio in amyloid PET images and L-MedT-Atrophy-score in CN group. The left medial temporal volume might become enlarged because of compensatory effects against AD pathology occurring at the beginning of the amyloid deposition.

11.
Med Phys ; 49(5): 2995-3005, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35246870

RESUMO

PURPOSE: The Bayesian penalized likelihood (BPL) reconstruction algorithm, Q.Clear, can achieve a higher signal-to-noise ratio on images and more accurate quantitation than ordered subset-expectation maximization (OSEM). The reconstruction parameter (ß) in BPL requires optimization according to the radiopharmaceutical tracer. The present study aimed to define the optimal ß value in BPL required to diagnose Alzheimer disease from brain positron emission tomography (PET) images acquired using 18 F-fluoro-2-deoxy-D-glucose ([18 F]FDG) and 11 C-labeled Pittsburg compound B ([11 C]PiB). METHODS: Images generated from Hoffman 3D brain and cylindrical phantoms were acquired using a Discovery PET/computed tomography (CT) 710 and reconstructed using OSEM + time-of-flight (TOF) under clinical conditions and BPL + TOF (ß = 20-1000). Contrast was calculated from images generated by the Hoffman 3D brain phantom, and noise and uniformity were calculated from those generated by the cylindrical phantom. Five cognitively healthy controls and five patients with Alzheimer disease were assessed using [18 F]FDG and [11 C]PiB PET to validate the findings from the phantom study. The ß values were restricted by the findings of the phantom study, then one certified nuclear medicine physician and two certified nuclear medicine technologists visually determined optimal ß values by scoring the quality parameters of image contrast, image noise, cerebellar stability, and overall image quality of PET images from 1 (poor) to 5 (excellent). RESULTS: The contrast in BPL satisfied the Japanese Society of Nuclear Medicine (JSNM) criterion of ≥55% and exceeded that of OSEM at ranges of ß = 20-450 and 20-600 for [18 F]FDG and [11 C]PiB, respectively. The image noise in BPL satisfied the JSNM criterion of ≤15% and was below that in OSEM when ß = 150-1000 and 400-1000 for [18 F]FDG and [11 C]PiB, respectively. The phantom study restricted the ranges of ß values to 100-300 and 300-500 for [18 F]FDG and [11 C]PiB, respectively. The BPL scores for gray-white matter contrast and image noise, exceeded those of OSEM in [18 F]FDG and [11 C]PiB images regardless of ß values. Visual evaluation confirmed that the optimal ß values were 200 and 450 for [18 F]FDG and [11 C]PiB, respectively. CONCLUSIONS: The BPL achieved better image contrast and less image noise than OSEM, while maintaining quantitative standardized uptake value ratios (SUVR) due to full convergence, more rigorous noise control, and edge preservation. The optimal ß values for [18 F]FDG and [11 C]PiB brain PET were apparently 200 and 450, respectively. The present study provides useful information about how to determine optimal ß values in BPL for brain PET imaging.


Assuntos
Doença de Alzheimer , Compostos de Anilina/química , Fluordesoxiglucose F18 , Tiazóis/química , Algoritmos , Doença de Alzheimer/diagnóstico por imagem , Teorema de Bayes , Encéfalo/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imagens de Fantasmas , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Tomografia por Emissão de Pósitrons
12.
Radiol Phys Technol ; 15(2): 116-124, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35239129

RESUMO

Shortening the amount of time required to acquire amyloid positron emission tomography (PET) brain images while maintaining the accuracy of quantitative evaluation would help to overcome motion artifacts associated with Alzheimer's disease patients. The present study aimed to validate the quantitative accuracy of [18F]florbetapir ([18F]FBP) imaging over a shorter acquisition duration. Forty participants were injected with [18F]FBP, and PET images were acquired for 50-55, 50-60, and 50-70 min after injection. Three physicians visually assessed the reprocessed [18F]FBP images using a binary scale to classify them as amyloid ß (Aß) negative or positive. A mean composite standard uptake value ratio (cSUVR) > 1.075 was defined as Aß-positive based on receiver operating characteristic curves. Inter-reader and inter-acquisition duration agreements with visual assessment were evaluated using Cohen's kappa (κ). Binary visual discrimination of 102 for the 120 [18F]FBP images, was consistent among the three readers. Sixteen, sixteen, and fourteen of the 40 [18F]FBP images acquired for 50-55, 50-60, and 50-70 min after injection, respectively, were deemed Aß-positive by visual assessment. The inter-rater agreement was high, and the inter-acquisition duration agreement was almost perfect. The cSUVR did not change significantly among the acquisition durations, and the acquisition duration did not affect the outcome of discrimination based on the cSUVR cutoff. A shorter acquisition duration changed the visual assessment outcomes. Stable quantitative values were derived from [18F]FBP images acquired within 5 min. cSUVR helped to improve the performance and confidence in the outcomes of visual assessment.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Doença de Alzheimer/diagnóstico por imagem , Peptídeos beta-Amiloides/metabolismo , Compostos de Anilina , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Etilenoglicóis , Humanos , Tomografia por Emissão de Pósitrons/métodos
13.
Mov Disord ; 37(4): 853-857, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35001424

RESUMO

BACKGROUND: Coffee intake can decrease the risk for Parkinson's disease (PD). Its beneficial effects are allegedly mediated by caffeine through adenosine A2A receptor (A2A R) antagonist action. OBJECTIVE: We aimed to calculate occupancy rates of striatal A2A Rs by caffeine after coffee intake in PD. METHODS: Five patients with PD underwent 11 C-preladenant positron emission tomography scanning at baseline and after intake of coffee containing 129.5 mg (n = 3) or 259 mg (n = 2) of caffeine. Concurrently, serum caffeine levels were measured. RESULTS: The mean serum caffeine level (µg/mL) was 0.374 at baseline and increased to 4.48 and 8.92 by 129.5 and 259 mg of caffeine, respectively. The mean occupancy rates of striatal A2A Rs by 129.5 and 259 mg of caffeine were 54.2% and 65.1%, respectively. CONCLUSIONS: A sufficient A2A R occupancy can be obtained by drinking a cup of coffee, which is equivalent to approximately 100 mg of caffeine. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Doença de Parkinson , Adenosina , Cafeína/farmacologia , Café , Humanos , Doença de Parkinson/diagnóstico por imagem , Receptor A2A de Adenosina
14.
Ann Nucl Med ; 36(1): 15-23, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34564828

RESUMO

OBJECTIVE: To evaluate the reproducibility of cerebral adenosine A2A receptor (A2AR) quantification using [11C]preladenant ([11C]PLN) and PET in a test-retest study. METHODS: Eight healthy male volunteers were enrolled. Dynamic 90 min PET scans were performed twice at the same time of the day to avoid the effect of diurnal variation. Subjects refrained from caffeine from 12 h prior to scanning, and serum caffeine was measured before radioligand injection. Arterial blood was sampled repeatedly during scanning and the fraction of the parent compound in plasma was determined. Total distribution volume (VT) was estimated using 1- and 2-tissue compartment models (1-TCM and 2-TCM, respectively) and Logan graphical analysis (Logan plot) (t* = 30 min). Plasma-free fraction (fP) of [11C]PLN was measured and used for correction of VT values. Distribution volume ratio (DVR) was calculated from VT of target and reference regions and obtained by noninvasive Logan graphical reference tissue model (LGAR) (t* = 30 min). Absolute test-retest variability (aTRV), and intra-class correlation coefficient (ICC) of VT and DVR were calculated as indexes of repeatability. Correlation between DVR and serum concentration of caffeine (a nonselective A2AR blocker) was analyzed by Pearson's correlation analysis. RESULTS: Regional time-activity curves were well described by 2-TCM models. Estimation of VT by 2-TCM produced some erroneous values; therefore, the more robust Logan plot was selected as the appropriate model. Global mean aTRV was 20% for VT and 14% for VT/fP (ICC, 0.72 for VT and 0.87 for VT/fP). Global mean aTRV of DVR was 13% for Logan plot and 10% for LGAR (ICC, 0.70 for Logan plot and 0.81 for LGAR). DVR estimates using LGAR and Logan plot were in good agreement (r2 = 0.96). Coefficients of variation for VT, VT/fP, DVR (Logan plot), and DVR (LGAR) were 47%, 47%, 27%, and 18%, respectively. Despite low serum caffeine levels, significant concentration-dependent effects on [11C]PLN binding to target regions were observed (p < 0.01). CONCLUSIONS: In this study, moderate test-retest reproducibility and large inter-subject differences were observed with [11C]PLN PET, possibly attributable to competition by baseline amount of caffeine. Analysis of plasma caffeine concentration is recommended during [11C]PLN PET studies. TRIAL REGISTRATION: UMIN000030040.


Assuntos
Pirimidinas , Triazóis
15.
Ann Nucl Med ; 35(11): 1240-1252, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34368924

RESUMO

OBJECTIVE: 5-(1-(2-[18F]fluoroethoxy))-[3-(6,7-dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-propyl]-5,6,7,8-tetrahydronaphthalen ([18F]MC225) is a selective substrate for P-glycoprotein (P-gp), possessing suitable properties for measuring overexpression of P-gp in the brain. This is the first-in-human study to examine safety, radiation dosimetry and P-gp function at the blood-brain barrier (BBB) of [18F]MC225 in healthy subjects. METHODS: [18F]MC225 biodistribution and dosimetry were determined in 3 healthy male subjects, using serial 2 h and intermittent 4 and 6 h whole-body PET scans acquired after [18F]MC225 injection. Dynamic [18F]MC225 brain PET (90 min) was obtained in 5 healthy male subjects. Arterial blood was sampled at various time intervals during scanning and the fraction of unchanged [18F]MC225 in plasma was determined. T1-weighted MRI was performed for anatomical coregistration. Total distribution volume (VT) was estimated using 1- and 2-tissue-compartment models (1-TCM and 2-TCM, respectively). VT was also estimated using the Logan graphical method (Logan plot) (t* = 20 min). Surrogate parameters without blood sampling (area-under the curve [AUC] of regional time-activity curves [TACs] and negative slope of calculated TACs) were compared with the VT values. RESULTS: No serious adverse events occurred throughout the study period. Although biodistribution implied hepatobiliary excretion, secretion of radioactivity from liver to small intestine through the gallbladder was very slow. Total renal excreted radioactivity recovered during 6 h after injection was < 2%ID. Absorbed dose was the highest in the pancreas (mean ± SD, 203 ± 45 µGy/MBq) followed by the liver (83 ± 11 µGy/MBq). Mean effective dose with and without urination was 17 ± 1 µSv/MBq. [18F]MC225 readily entered the brain, distributing homogeneously in grey matter regions. 2-TCM provided lower Akaike information criterion scores than did 1-TCM. VT estimated by Logan plot was well correlated with that of 2-TCM (r2 > 0.9). AUCs of TACs were positively correlated with VT (2-TCM) values (r2: AUC0-60 min = 0.61, AUC0-30 min = 0.62, AUC30-60 min = 0.59, p < 0.0001). Negative slope of SUV TACs was negatively correlated with VT (2-TCM) values (r2 = 0.53, p < 0.0001). CONCLUSIONS: This initial evaluation indicated that [18F]MC225 is a suitable and safe PET tracer for measuring P-gp function at the BBB.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP
16.
Artigo em Japonês | MEDLINE | ID: mdl-34305055

RESUMO

PURPOSE: We investigated how a radiologic technologist explains to a patient about the risk of radiation exposure involved by the radiological examination. METHODS: In this institutional review board-approved, cross-sectional study, an online questionnaire link was emailed to 650 radiological technologists who are members of the National Hospital Kanto Koshinetsu Radiological Technologist Association. The questions to survey risk communication included the ideal and reality explanation for radiation exposure to patients, the respondent's educational background, and years of experience. Statistical analysis was performed using the Kruskal-Wallis test and Bonferroni correction as a multiple comparison test. RESULTS: Among the 650 radiological technologists, 245 (37.7%) completed the online questionnaire. The most common response was to compare and convey the doses of radiation during examination and background radiation when asked by a patient about risk. In the cross-analysis, the Kruskal-Wallis test showed no significant difference in what was explained according to educational background. According to years of experience, a significant difference in the content was found about explanation of the risk to patients. CONCLUSIONS: We clarified the actual condition of risk communication related to the exposure in radiological examinations. In the future, development of risk communication is expected by improving the knowledge and information of "risk" and giving explanations requested by patients.


Assuntos
Conhecimentos, Atitudes e Prática em Saúde , Exposição à Radiação , Comunicação , Estudos Transversais , Humanos , Inquéritos e Questionários
17.
J Neuroimaging ; 31(5): 864-868, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34143915

RESUMO

BACKGROUND AND PURPOSE: Little evidence exists on the role of type 1 metabotropic glutamate receptor (mGluR1) in the pathophysiology of Alzheimer's disease (AD), although mGluR1 may be involved in the regulation of neuronal excitability and synaptic plasticity. We have recently reported that mGluR1 availability in the early stage of AD is equivalent to that in healthy subjects. This study aimed to address whether mGluR1 availability changes with the progression of AD. METHODS: Eight patients with AD (79.1 ± 4.6 years) underwent a total of two positron emission tomography (PET) examinations using the mGluR1 radioligand during the early-to-middle stages of AD. The mean interval was 2.8 years. Volumes-of-interest were placed on the frontal, parietal, and temporal cortices, hippocampus, anterior and posterior lobes, and vermis in the cerebellum. The binding potential (BPND ) was calculated to estimate mGluR1 availability, applying partial volume correction to the BPND values. RESULTS: No significant difference was observed in BPND values between the first and second PET examinations in the frontal cortex (p = 0.94), parietal cortex (p = 0.67), temporal cortex (p = 0.20), hippocampus (p = 0.17), anterior lobe (p = 0.73), posterior lobe (p = 0.21), and vermis (p = 0.22). CONCLUSION: This study suggests that mGluR1 availability is unchanged in the follow-up period of a few years during the early-to-middle stages of AD.


Assuntos
Doença de Alzheimer , Receptores de Glutamato Metabotrópico , Doença de Alzheimer/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Humanos , Tomografia por Emissão de Pósitrons , Receptores de Glutamato Metabotrópico/metabolismo
18.
Phys Med ; 82: 249-254, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33677386

RESUMO

PURPOSE: A standardized method for quantification is required for analyzing PET data, but such standards have not been established for tau PET imaging. The Centiloid scale has recently been proposed as a standard method for quantifying amyloid deposition on PET imaging. Therefore, the present study aimed to apply the Centiloid scale to 18F-THK5351 PET imaging in Alzheimer's disease (AD). METHODS: We acquired 18F-THK5351 PET, 11C-PiB PET, and MR images from 47 cognitively normal (CN) individuals and 28 patients with AD with mild to moderate dementia. PET images were spatially normalized to Montreal Neurological Institute space. The PET signals were then normalized using the signal in the reference volume of interest (VOI). Target VOI for specific 18F-THK5351 retention in AD was extracted by voxel-wise comparison of PET images between the 47 CN individuals and 16 AD patients with moderate dementia. Scale anchor points were defined by the CN individuals as 0-anchor points and by that of the average of the typical AD patients as 100-anchor points. RESULTS: Specific retention of 18F-THK5351 was predominant in the angular gyrus, inferior temporal cortex, and parieto-occipital regions in patients with AD. Standardized uptake value ratio (SUVR) of 1.227 and 1.797 were defined as 0- and 100-anchor points, respectively. 18F-THK5351 PET data could be expressed using the Centiloid scale, with the SUVR of the 18F-THK5351 PET images converted to Centiloid using our VOI, the standard Centiloid reference VOI, and the following equation: Centiloid = 169.0 × SUVR-204.6. CONCLUSION: Centiloid methods can be applied to tau PET imaging using 18F-THK5351.


Assuntos
Doença de Alzheimer , Quinolinas , Doença de Alzheimer/diagnóstico por imagem , Aminopiridinas , Humanos , Tomografia por Emissão de Pósitrons
19.
Artigo em Japonês | MEDLINE | ID: mdl-33473077

RESUMO

BACKGROUND: 18F-florbetapir is an amyloid ß (Aß) -targeted 18F-labeled positron emission tomography (PET) tracer for the clinical diagnosis of Alzheimer's disease. The standardized uptake value ratio (SUVR) serves as a tool with which to differentially diagnose. The present study aimed to cross-validate and compare SUVR derived from Amygo neuro and MIMneuro software. METHODS: We injected 40 individuals with 18F-florbetapir and then acquired PET images from 50 to 60 minutes later. All images were separately normalized to the standard 18F-florbetapir PET template using Amygo neuro and MIMneuro. Volumes of interest (VOIs) were automatically placed on six target regions each in Amygo neuro and MIMneuro. The composite SUVR (cSUVR) and regional SUVR (rSUVR) were calculated from mean values measured in VOI. A cSUVR of>1.10 was defined as representing Aß positivity. Correlation coefficients were calculated in the two types of software. RESULTS: A cSUVR>1.10 was determined by Amygo neuro and MIMneuro in 15 of the 40 individuals. The rSUVR in the posterior cingulate, parietal lobe, precuneus, and temporal lobe significantly differed between Amygo neuro and MIMneuro, whereas the cSUVR did not. The SUVR calculated by the two types of software closely correlated to each other (R=0.89-0.96, P<0.05). CONCLUSIONS: The cSUVR was not different between Amygo neuro and MIMneuro. We suggest that Amygo neuro is comparable to MIMneuro in quantitative analysis using SUVR for 18F-florbetapir imaging, thus facilitating the use of standardized quantitative approaches to amyloid PET imaging.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Doença de Alzheimer/diagnóstico por imagem , Peptídeos beta-Amiloides/metabolismo , Compostos de Anilina , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Etilenoglicóis , Humanos , Tomografia por Emissão de Pósitrons , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA