Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Neurooncol Adv ; 3(1): vdaa165, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33506204

RESUMO

BACKGROUND: Glioma is sensitive to microtubule-targeting agents (MTAs), but most MTAs do not cross the blood brain barrier (BBB). To address this limitation, we developed the new chemical entity, ST-401, a brain-penetrant MTA. METHODS: Synthesis of ST-401. Measures of MT assembly and dynamics. Cell proliferation and viability of patient-derived (PD) glioma in culture. Measure of tumor microtube (TM) parameters using immunofluorescence analysis and machine learning-based workflow. Pharmacokinetics (PK) and experimental toxicity in mice. In vivo antitumor activity in the RCAS/tv-a PDGFB-driven glioma (PDGFB-glioma) mouse model. RESULTS: We discovered that ST-401 disrupts microtubule (MT) function through gentle and reverisible reduction in MT assembly that triggers mitotic delay and cell death in interphase. ST-401 inhibits the formation of TMs, MT-rich structures that connect glioma to a network that promotes resistance to DNA damage. PK analysis of ST-401 in mice shows brain penetration reaching antitumor concentrations, and in vivo testing of ST-401 in a xenograft flank tumor mouse model demonstrates significant antitumor activity and no over toxicity in mice. In the PDGFB-glioma mouse model, ST-401 enhances the therapeutic efficacies of temozolomide (TMZ) and radiation therapy (RT). CONCLUSION: Our study identifies hallmarks of glioma tumorigenesis that are sensitive to MTAs and reports ST-401 as a promising chemical scaffold to develop brain-penetrant MTAs.

2.
Mol Brain ; 13(1): 119, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32873320

RESUMO

Cav3.2 T-type calcium channels are important mediators of nociceptive signaling, but their roles in the transmission of itch remains poorly understood. Here we report a key involvement of these channels as key modulators of itch/pruritus-related behavior. We compared scratching behavior responses between wild type and Cav3.2 null mice in models of histamine- or chloroquine-induced itch. We also evaluated the effect of the T-type calcium channel blocker DX332 in male and female wild-type mice injected with either histamine or chloroquine. Cav3.2 null mice exhibited decreased scratching responses during both histamine- and chloroquine-induced acute itch. DX332 co-injected with the pruritogens inhibited scratching responses of male and female mice treated with either histamine or chloroquine. Altogether, our data provide strong evidence that Cav3.2 T-type channels exert an important role in modulating histamine-dependent and -independent itch transmission in the primary sensory afferent pathway, and highlight these channels as potential pharmacological targets to treat pruritus.


Assuntos
Canais de Cálcio Tipo T/metabolismo , Prurido/metabolismo , Doença Aguda , Animais , Comportamento Animal , Canais de Cálcio Tipo T/deficiência , Cloroquina , Feminino , Histamina , Masculino , Camundongos Endogâmicos C57BL
3.
Supramol Chem ; 30(12): 1004-1010, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-31086476

RESUMO

The study of hydrogen bonding organocatalysis is rapidly expanding. Much research has been directed at making catalysts more active and selective, with less attention on fundamental design strategies. This study systematically increases steric hindrance at the active site of pH switchable urea organocatalysts. Incorporating strong intramolecular hydrogen bonds from protonated pyridines to oxygen stabilizes the active conformation of these ureas thus reducing the entropic penalty that results from substrate binding. The effect of increasing steric hindrance was studied by single crystal X-ray diffraction and by kinetics experiments of a benchmark reaction.

4.
Angew Chem Int Ed Engl ; 55(40): 12398-402, 2016 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-27411932

RESUMO

The self-assembly of higher-order anion helicates in solution remains an elusive goal. Herein, we present the first triple helicate to encapsulate iodide in organic and aqueous media as well as the solid state. The triple helicate self-assembles from three tricationic arylethynyl strands and resembles a tubular anion channel lined with nine halogen bond donors. Eight strong iodine⋅⋅⋅iodide halogen bonds and numerous buried π-surfaces endow the triplex with remarkable stability, even at elevated temperatures. We suggest that the natural rise of a single-strand helix renders its linear halogen-bond donors non-convergent. Thus, the stringent linearity of halogen bonding is a powerful tool for the synthesis of multi-strand anion helicates.


Assuntos
Halogênios/química , Iodetos/química , Substâncias Macromoleculares/química , Aminopiridinas/química , Espectroscopia de Ressonância Magnética , Modelos Moleculares
5.
Supramol Chem ; 28(7-8): 665-672, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-34113068

RESUMO

The study of hydrogen bonding organocatalysis is rapidly expanding. Much research has been directed at making catalysts more active and selective, with less attention on fundamental design strategies. This study systematically increases steric hindrance at the active site of pH switchable urea organocatalysts. Incorporating strong intramolecular hydrogen bonds from protonated pyridines to oxygen stabilizes the active conformation of these ureas thus reducing the entropic penalty that results from substrate binding. The effect of increasing steric hindrance was studied by single crystal X-ray diffraction and by kinetics experiments of a benchmark reaction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA