Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Nanotechnol ; 18(11): 1319-1326, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37591933

RESUMO

Multispecific antibodies have emerged as versatile therapeutic agents, and therefore, approaches to optimize and streamline their design and assembly are needed. Here we report on the modular and programmable assembly of IgG antibodies, F(ab) and scFv fragments on DNA origami nanocarriers. We screened 105 distinct quadruplet antibody variants in vitro for the ability to activate T cells in the presence of target cells. T-cell engagers were identified, which in vitro showed the specific and efficient T-cell-mediated lysis of five distinct target cell lines. We used these T-cell engagers to target and lyse tumour cells in vivo in a xenograft mouse tumour model. Our approach enables the rapid generation, screening and testing of bi- and multispecific antibodies to facilitate preclinical pharmaceutical development from in vitro discovery to in vivo proof of concept.


Assuntos
Neoplasias , Linfócitos T , Humanos , Camundongos , Animais , Neoplasias/terapia , Imunoglobulina G , DNA
2.
Nature ; 552(7683): 78-83, 2017 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-29219966

RESUMO

Natural biomolecular assemblies such as molecular motors, enzymes, viruses and subcellular structures often form by self-limiting hierarchical oligomerization of multiple subunits. Large structures can also assemble efficiently from a few components by combining hierarchical assembly and symmetry, a strategy exemplified by viral capsids. De novo protein design and RNA and DNA nanotechnology aim to mimic these capabilities, but the bottom-up construction of artificial structures with the dimensions and complexity of viruses and other subcellular components remains challenging. Here we show that natural assembly principles can be combined with the methods of DNA origami to produce gigadalton-scale structures with controlled sizes. DNA sequence information is used to encode the shapes of individual DNA origami building blocks, and the geometry and details of the interactions between these building blocks then control their copy numbers, positions and orientations within higher-order assemblies. We illustrate this strategy by creating planar rings of up to 350 nanometres in diameter and with atomic masses of up to 330 megadaltons, micrometre-long, thick tubes commensurate in size to some bacilli, and three-dimensional polyhedral assemblies with sizes of up to 1.2 gigadaltons and 450 nanometres in diameter. We achieve efficient assembly, with yields of up to 90 per cent, by using building blocks with validated structure and sufficient rigidity, and an accurate design with interaction motifs that ensure that hierarchical assembly is self-limiting and able to proceed in equilibrium to allow for error correction. We expect that our method, which enables the self-assembly of structures with sizes approaching that of viruses and cellular organelles, can readily be used to create a range of other complex structures with well defined sizes, by exploiting the modularity and high degree of addressability of the DNA origami building blocks used.


Assuntos
DNA/química , DNA/síntese química , Nanoestruturas/química , Nanotecnologia , Conformação de Ácido Nucleico , Software , Sequência de Bases , Biopolímeros/química , Microscopia Crioeletrônica , DNA/ultraestrutura , Sistemas de Liberação de Medicamentos , Microscopia Eletrônica de Transmissão , Nanoestruturas/ultraestrutura , Organelas , Reprodutibilidade dos Testes , Alicerces Teciduais/química , Vírus
3.
Langmuir ; 33(47): 13615-13624, 2017 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-29083194

RESUMO

The reduction of metal precursors during the polyol synthesis of metal nanoparticles was monitored by ex situ ionic conductivity measurements. Using commonly used platinum precursors (K2PtCl6, H2PtCl6, and K2PtCl4) as well as iridium and ruthenium precursors (IrCl3 and RuCl3), we demonstrate that their reduction in ethylene glycol at elevated temperatures is accompanied by a predictable change in ionic conductivity, enabling a precise quantification of the onset temperature for their reduction. This method also allows detecting the onset temperature for the further reaction of ethylene glycol with HCl produced by the reduction of chloride-containing metal precursors (at ≈120 °C). On the basis of these findings, we show that the conversion of the metal precursor to reduced metal atoms/clusters can be precisely quantified, if the reaction occurs below 120 °C, which also enables a distinction between the stages of metal particle nucleation and growth. The latter is demonstrated by the reduction of H2PtCl6 in ethylene glycol, comparing ionic conductivity measurements with transmission electron microscopy analysis. In summary, ionic conductivity measurements are a simple and straightforward tool to quantify the reduction kinetics of commonly used metal precursors in the polyol synthesis.

4.
Chembiochem ; 18(19): 1873-1885, 2017 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-28714559

RESUMO

DNA origami has attracted substantial attention since its invention ten years ago, due to the seemingly infinite possibilities that it affords for creating customized nanoscale objects. Although the basic concept of DNA origami is easy to understand, using custom DNA origami in practical applications requires detailed know-how for designing and producing the particles with sufficient quality and for preparing them at appropriate concentrations with the necessary degree of purity in custom environments. Such know-how is not readily available for newcomers to the field, thus slowing down the rate at which new applications outside the field of DNA nanotechnology may emerge. To foster faster progress, we share in this article the experience in making and preparing DNA origami that we have accumulated over recent years. We discuss design solutions for creating advanced structural motifs including corners and various types of hinges that expand the design space for the more rigid multilayer DNA origami and provide guidelines for preventing undesired aggregation and on how to induce specific oligomerization of multiple DNA origami building blocks. In addition, we provide detailed protocols and discuss the expected results for five key methods that allow efficient and damage-free preparation of DNA origami. These methods are agarose-gel purification, filtration through molecular cut-off membranes, PEG precipitation, size-exclusion chromatography, and ultracentrifugation-based sedimentation. The guide for creating advanced design motifs and the detailed protocols with their experimental characterization that we describe here should lower the barrier for researchers to accomplish the full DNA origami production workflow.


Assuntos
DNA/química , Nanoestruturas/química , Nanotecnologia
5.
Science ; 347(6229): 1446-52, 2015 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-25814577

RESUMO

We demonstrate that discrete three-dimensional (3D) DNA components can specifically self-assemble in solution on the basis of shape-complementarity and without base pairing. Using this principle, we produced homo- and heteromultimeric objects, including micrometer-scale one- and two-stranded filaments and lattices, as well as reconfigurable devices, including an actuator, a switchable gear, an unfoldable nanobook, and a nanorobot. These multidomain assemblies were stabilized via short-ranged nucleobase stacking bonds that compete against electrostatic repulsion between the components' interfaces. Using imaging by electron microscopy, ensemble and single-molecule fluorescence resonance energy transfer spectroscopy, and electrophoretic mobility analysis, we show that the balance between attractive and repulsive interactions, and thus the conformation of the assemblies, may be finely controlled by global parameters such as cation concentration or temperature and by an allosteric mechanism based on strand-displacement reactions.


Assuntos
DNA/química , Nanoestruturas/química , Nanotecnologia/métodos , Conformação de Ácido Nucleico , Pareamento de Bases , Eletroforese , Transferência Ressonante de Energia de Fluorescência , Imagem Molecular , RNA/química , Eletricidade Estática
6.
Nat Commun ; 5: 3691, 2014 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-24751596

RESUMO

Molecular self-assembly with DNA is an attractive route for building nanoscale devices. The development of sophisticated and precise objects with this technique requires detailed experimental feedback on the structure and composition of assembled objects. Here we report a sensitive assay for the quality of assembly. The method relies on measuring the content of unpaired DNA bases in self-assembled DNA objects using a fluorescent de-Bruijn probe for three-base 'codons', which enables a comparison with the designed content of unpaired DNA. We use the assay to measure the quality of assembly of several multilayer DNA origami objects and illustrate the use of the assay for the rational refinement of assembly protocols. Our data suggests that large and complex objects like multilayer DNA origami can be made with high strand integration quality up to 99%. Beyond DNA nanotechnology, we speculate that the ability to discriminate unpaired from paired nucleic acids in the same macromolecule may also be useful for analysing cellular nucleic acids.


Assuntos
DNA/química , Pareamento de Bases , Códon , Corantes Fluorescentes/química , Microscopia Eletrônica de Transmissão , Conformação de Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA