Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(19): e37923, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39386789

RESUMO

Energy efficiency analysis provides a deeper understanding of non-renewable energy dependent cropping systems. In this study, we examined the crop yield and energy efficiency of facultative rainfed wheat (WW - winter wheat, WS - spring wheat) and mineral nitrogen (N) fertilization (0, 50, 100, 150, and 200 kg N ha-1) in two growing seasons 2019/20 and 2020/21 in Central Europe. WW out performed WS significantly overall (2019/20: +30.3 to +47.9 %; 2020/21: +18.9 to +37.3 %) in terms of energy efficiency indicators. The impact of N fertilization on energy efficiency was minimal, largely due to one dose application of mineral N fertilizer. The highest estimated net-energy output (NEO) was observed at 160.2 kg N ha-1, which may not sustainable for this pedo-climatic region due to potential N emissions risks. Zero N fertilization showed best performance in terms of energy use efficiency (EUE), energy intensity (EI), and energy productivity (EP). The ERG z-score, which combines NEO and EUE into a single bi-dimensional indicator, indicated an optimal N fertilization level of 72.0 kg N ha-1.

2.
Plants (Basel) ; 13(3)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38337874

RESUMO

The intended or unintentional transport of soil material contaminated with weed seeds is one of the most important drivers in the spreading dynamics of invasive alien plants (IAPs). This phenomenon can be observed at any kind of construction site. Typical transfer of soil contaminated with IAP seeds can be observed along with road construction (soil translocation) or road maintenance services (deposit of mown plant biomass). Thus, an effective inactivation of these seeds by heating can avoid the spread of IAPs substantially. In the present study, the effects of various thermal control techniques (dry air heating and wet heating with hot steam, hot water, and hot foam) on seed survival of the widespread European IAPs common ragweed (Ambrosia artemisiifolia), narrow-leaved ragwort (Senecio inaequidens), and giant hogweed (Heracleum mantegazzianum) are discussed. Dry and wet seeds which were either uncovered or covered with soil were tested for survival at different treatment temperatures and different exposure times. Results revealed that particularly dry seeds of all three species could withstand temperatures of 100 °C for at least 6 h in climate chambers. Dry seeds of common ragweed and narrow-leaved ragwort survived exposure times of up to 48 h. Wet seeds were significantly more susceptible to heat treatments. Giant hogweed seeds were completely killed after 12 h at 70 °C. The exposure of IAP seeds to hot water was generally more effective than the treatment with hot steam. The treatment with hot foam was only effective when seeds were lying unprotected on the soil surface. Dry seeds of all the three species survived hot foam application in the field when they were covered by vegetation and leaf litter or soil. Due to the robustness of the seeds, a preventive management of IAPs by an efficient control before seeds formation is substantial to avoid their further dispersal.

3.
Plants (Basel) ; 12(18)2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37765461

RESUMO

Communication through airborne volatile organic compounds (VOCs) and root exudates plays a vital role in the multifarious interactions of plants. Common ragweed (Ambrosia artemesiifolia L.) is one of the most troublesome invasive alien species in agriculture. Below- and aboveground chemical interactions of ragweed with crops might be an important factor in the invasive species' success in agriculture. In laboratory experiments, we investigated the contribution of intra- and interspecific airborne VOCs and root exudates of ragweed to its competitiveness. Wheat, soybean, and maize were exposed to VOCs emitted from ragweed and vice versa, and the adaptation response was measured through plant morphological and physiological traits. We observed significant changes in plant traits of crops in response to ragweed VOCs, characterized by lower biomass production, lower specific leaf area, or higher chlorophyll contents. After exposure to ragweed VOCs, soybean and wheat produced significantly less aboveground dry mass, whereas maize did not. Ragweed remained unaffected when exposed to VOCs from the crops or a conspecific. All crops and ragweed significantly avoided root growth toward the root exudates of ragweed. The study shows that the plant response to either above- or belowground chemical cues is highly dependent on the identity of the neighbor, pointing out the complexity of plant-plant communication in plant communities.

4.
Plants (Basel) ; 12(9)2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37176826

RESUMO

Following the novel weapon hypothesis, the invasiveness of non-native species, such as common ragweed (Ambrosia artemisiifolia L.) can result from a loss of natural competitors due to the production of chemical compounds, which negatively affect native communities. Particularly the genus Ambrosia produces several types of organic compounds, which have the potential to inhibit germination and growth of other plants. Subsequent to an assessment of the chemical content of three different ragweed extracts (aqueous shoot and root extracts, as well as essential oil), two different trials on the effects of different concentrations of these extracts, as well as ragweed residues, were conducted on two different mediums (Petri dish vs. soil). In addition, we investigated the impact on the infection potential of Bradyrhizobium japonicum on soybean roots in three different soil types (arable soil, potting soil, and sand). The results showed that the exposure to common ragweed extracts and residues induced changes in the biomass and root production of crops and ragweed itself. Even though crops and ragweed differed in their response behavior, the strongest negative impact on all crops and ragweed was observed with ragweed residues, leading to reductions in biomass and root growth of up to 90%. Furthermore, we found a decrease in the number of rhizobial nodules of up to 48% when soybean was exposed to ragweed root extract.

5.
Plants (Basel) ; 12(8)2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37111936

RESUMO

Faba bean (Vicia faba L. minor) is an important grain legume and is widely used as food and feed. It is traditionally used as a spring crop in Central European cropping systems. There is increasing interest in winter faba bean due to a higher yield potential, but limited knowledge of nitrogen (N) yields and nitrogen fixation (NFIX) exists. Therefore, the purpose of this study was to compare N concentrations, N yield of plant fractions, soil mineral N (SMN) and SMN sparing in the soil after harvest, NFIX and N balance of two winter faba bean varieties (Diva and Hiverna) to those of a spring faba bean (Alexia) using two seeding rates (25 versus 50 germinable seeds m-2) in a two-year field experiment under Pannonian climate conditions in eastern Austria. The winter faba bean varieties had higher N yields and NFIX, not only due to higher biomass yields, but also due to higher N concentrations and a higher percentage of N derived from atmosphere in the biomass. Conversely, the soil mineral N after harvest was lower compared to the spring faba bean. All treatments had a negative N balance due to higher grain N yield than NFIX. Winter faba beans left higher amounts of biologically-fixed N in residues for the subsequent crop, whereas spring faba bean left more SMN. Winter faba bean varieties obtained good results with both seeding rates, whereas the grain yield and the grain N yield of Alexia tended to higher with the higher seeding rate.

6.
Plants (Basel) ; 11(4)2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35214898

RESUMO

The status of macronutrients phosphorus (P), potassium (K), sulphur (S), calcium (Ca) and magnesium (Mg) was assessed 15 years after the establishment of a long-term crop rotation and soil tillage trial with mouldboard ploughing (MP), no-till (NT), deep conservation tillage (CTd) and shallow conservation tillage (CTs). The mobile proportions of macronutrients in an Austrian Chernozem soil were determined to a depth of 50 cm with the single reagent extractant acetic acid (AA) and Mehlich 3 (M3), which uses several reagents as extractants. AA revealed less P and K, but more Ca and Mg compared to M3. Both extractants could capture the distribution pattern of the nutrients in the soil profile, but M3 showed higher differences among the soil layers. In the first 5 cm in NT, the P concentration was higher than in MP, CTd and CTs. The concentration of K was higher in NT, CTd and CTs than in MP in the first 10 cm of the soil. Phosphorus and K concentrations did not differ between tillage treatments below these soil layers, and S, Ca and Mg were similar in all soil layers. As none of the analysed elements except for Ca were fertilized and no accumulation of S, Ca and Mg was observed in the upper soil layer, the higher concentrations are attributed to accumulation through crop residues and then less leaching of P and K. Crop rotation did not affect the distribution of the analysed macronutrients in the soil but affected the nutrient uptake by winter wheat mostly due to the yield differences of winter wheat in the two crop rotations.

7.
Bioresour Technol ; 98(17): 3204-12, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16935493

RESUMO

Biogas production is of major importance for the sustainable use of agrarian biomass as renewable energy source. Economic biogas production depends on high biogas yields. The project aimed at optimising anaerobic digestion of energy crops. The following aspects were investigated: suitability of different crop species and varieties, optimum time of harvesting, specific methane yield and methane yield per hectare. The experiments covered 7 maize, 2 winter wheat, 2 triticale varieties, 1 winter rye, and 2 sunflower varieties and 6 variants with permanent grassland. In the course of the vegetation period, biomass yield and biomass composition were measured. Anaerobic digestion was carried out in eudiometer batch digesters. The highest methane yields of 7500-10200 m(N)(3)ha(-1) were achieved from maize varieties with FAO numbers (value for the maturity of the maize) of 300 to 600 harvested at "wax ripeness". Methane yields of cereals ranged from 3200 to 4500 m(N)(3)ha(-1). Cereals should be harvested at "grain in the milk stage" to "grain in the dough stage". With sunflowers, methane yields between 2600 and 4550 m(N)(3)ha(-1) were achieved. There were distinct differences between the investigated sunflower varieties. Alpine grassland can yield 2700-3500 m(N)(3)CH(4)ha(-1). The methane energy value model (MEVM) was developed for the different energy crops. It estimates the specific methane yield from the nutrient composition of the energy crops. Energy crops for biogas production need to be grown in sustainable crop rotations. The paper outlines possibilities for optimising methane yield from versatile crop rotations that integrate the production of food, feed, raw materials and energy. These integrated crop rotations are highly efficient and can provide up to 320 million t COE which is 96% of the total energy demand of the road traffic of the EU-25 (the 25 Member States of the European Union).


Assuntos
Agricultura/métodos , Conservação de Recursos Energéticos , Produtos Agrícolas/metabolismo , Metano/metabolismo , Anaerobiose , Áustria , Biomassa , Biotransformação , Helianthus , Modelos Biológicos , Poaceae , Zea mays
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA