Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 21550, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39284872

RESUMO

The main causes of frequency instability or oscillations in islanded microgrids are unstable load and varying power output from distributed generating units (DGUs). An important challenge for islanded microgrid systems powered by renewable energy is maintaining frequency stability. To address this issue, a proportional integral derivative (PID) controller is designed in this article. Firstly, islanded microgrid model is constructed by incorporating various DGUs and flywheel energy storage system (FESS). Further, considering first order transfer function of FESS and DGUs, a linearized transfer function is obtained. This transfer function is further approximated into first order plus time delay (FOPTD) form to design PID control strategy, which is efficient and easy to analyze. PID parameters are evaluated using the Chien-Hrones-Reswick (CHR) method for set point tracking and load disturbance rejection for 0% and 20% overshoot. The CHR method for load disturbance rejection for 20% overshoot emerges as the preferred choice over other discussed tuning methods. The effectiveness of the discussed method is demonstrated through frequency analysis and transient responses and also validated through real time simulations. Moreover, tabulated data presenting tuning parameters, time domain specifications and comparative frequency plots, support the validity of the proposed tuning method for PID control design of the presented islanded model.

2.
Sci Rep ; 14(1): 11446, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769344

RESUMO

Decision makers consistently face the challenge of simultaneously assessing numerous attributes, determining their respective importance, and selecting an appropriate method for calculating their weights. This article addresses the problem of automatic generation control (AGC) in a two area power system (2-APS) by proposing fuzzy analytic hierarchy process (FAHP), an multi-attribute decision-making (MADM) technique, to determine weights for sub-objective functions. The integral-time-absolute-errors (ITAE) of tie-line power fluctuation, frequency deviations and area control errors, are defined as the sub-objectives. Each of these is given a weight by the FAHP method, which then combines them into an single final objective function. This objective function is then used to design a PID controller. To improve the optimization of the objective function, the Jaya optimization algorithm (JOA) is used in conjunction with other optimization techniques such as sine cosine algorithm (SCA), Luus-Jaakola algorithm (LJA), Nelder-Mead simplex algorithm (NMSA), symbiotic organism search algorithm (SOSA) and elephant herding optimization algorithm (EHOA). Six distinct experimental cases are conducted to evaluate the controller's performance under various load conditions, with data plotted to show responses corresponding to fluctuations in frequency and tie-line exchange. Furthermore, statistical analysis is performed to gain a better understanding of the effectiveness of the JOA-based PID controller. For non-parametric evaluation, Friedman rank test is also used to validate the performance of the proposed JOA-based controller.

3.
Sci Rep ; 14(1): 11267, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760466

RESUMO

Multi-criteria decision-making (MCDM) presents a significant challenge in decision-making processes, aiming to ascertain optimal choice by considering multiple criteria. This paper proposes rank order centroid (ROC) method, MCDM technique, to determine weights for sub-objective functions, specifically, addressing issue of automatic generation control (AGC) within two area interconnected power system (TAIPS). The sub-objective functions include integral time absolute errors (ITAE) for frequency deviations and control errors in both areas, along with ITAE of fluctuation in tie-line power. These are integrated into an overall objective function, with ROC method systematically assigning weights to each sub-objective. Subsequently, a PID controller is designed based on this objective function. To further optimize objective function, Jaya optimization algorithm (JOA) is implemented, alongside other optimization algorithms such as teacher-learner based optimization algorithm (TLBOA), Luus-Jaakola algorithm (LJA), Nelder-Mead simplex algorithm (NMSA), elephant herding optimization algorithm (EHOA), and differential evolution algorithm (DEA). Six distinct case analyses are conducted to evaluate controller's performance under various load conditions, plotting data to illustrate responses to frequency and tie-line exchange fluctuations. Additionally, statistical analysis is performed to provide further insights into efficacy of JOA-based PID controller. Furthermore, to prove the efficacy of JOA-based proposed controller through non-parametric test, Friedman rank test is utilized.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA