Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37398185

RESUMO

How evolution at the cellular level potentiates change at the macroevolutionary level is a major question in evolutionary biology. With >66,000 described species, rove beetles (Staphylinidae) comprise the largest metazoan family. Their exceptional radiation has been coupled to pervasive biosynthetic innovation whereby numerous lineages bear defensive glands with diverse chemistries. Here, we combine comparative genomic and single-cell transcriptomic data from across the largest rove beetle clade, Aleocharinae. We retrace the functional evolution of two novel secretory cell types that together comprise the tergal gland-a putative catalyst behind Aleocharinae's megadiversity. We identify key genomic contingencies that were critical to the assembly of each cell type and their organ-level partnership in manufacturing the beetle's defensive secretion. This process hinged on evolving a mechanism for regulated production of noxious benzoquinones that appears convergent with plant toxin release systems, and synthesis of an effective benzoquinone solvent that weaponized the total secretion. We show that this cooperative biosynthetic system arose at the Jurassic-Cretaceous boundary, and that following its establishment, both cell types underwent ∼150 million years of stasis, their chemistry and core molecular architecture maintained almost clade-wide as Aleocharinae radiated globally into tens of thousands of lineages. Despite this deep conservation, we show that the two cell types have acted as substrates for the emergence of adaptive, biochemical novelties-most dramatically in symbiotic lineages that have infiltrated social insect colonies and produce host behavior-manipulating secretions. Our findings uncover genomic and cell type evolutionary processes underlying the origin, functional conservation and evolvability of a chemical innovation in beetles.

2.
Elife ; 112022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36098509

RESUMO

The scaling of respiratory structures has been hypothesized to be a major driving factor in the evolution of many aspects of animal physiology. Here, we provide the first assessment of the scaling of the spiracles in insects using 10 scarab beetle species differing 180× in mass, including some of the most massive extant insect species. Using X-ray microtomography, we measured the cross-sectional area and depth of all eight spiracles, enabling the calculation of their diffusive and advective capacities. Each of these metrics scaled with geometric isometry. Because diffusive capacities scale with lower slopes than metabolic rates, the largest beetles measured require 10-fold higher PO2 gradients across the spiracles to sustain metabolism by diffusion compared to the smallest species. Large beetles can exchange sufficient oxygen for resting metabolism by diffusion across the spiracles, but not during flight. In contrast, spiracular advective capacities scale similarly or more steeply than metabolic rates, so spiracular advective capacities should match or exceed respiratory demands in the largest beetles. These data illustrate a general principle of gas exchange: scaling of respiratory transport structures with geometric isometry diminishes the potential for diffusive gas exchange but enhances advective capacities; combining such structural scaling with muscle-driven ventilation allows larger animals to achieve high metabolic rates when active.


Assuntos
Besouros , Transporte Respiratório , Animais , Insetos/metabolismo , Oxigênio/metabolismo , Respiração
3.
Curr Opin Insect Sci ; 51: 100903, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35301166

RESUMO

The rise of ants over the past ~100 million years reshaped the biosphere, presenting ecological challenges for many organisms, but also opportunities. No insect group has been so adept at exploiting niches inside ant colonies as the rove beetles (Staphylinidae) - a global clade of>64,000 predominantly free-living predators from which numerous socially parasitic 'myrmecophile' lineages have emerged. Myrmecophilous staphylinids are specialized for colony life through changes in behavior, chemistry, anatomy, and life history that are often strikingly convergent, and hence potentially adaptive for this symbiotic way of life. Here, we examine how the interplay between ecological pressures and molecular, cellular, and neurobiological mechanisms shape the evolutionary trajectories of symbiotic lineages in this ancient, convergent system.


Assuntos
Formigas , Besouros , Animais , Formigas/parasitologia , Evolução Biológica , Besouros/anatomia & histologia , Simbiose
4.
Nucleic Acids Res ; 48(8): 4052-4065, 2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32182341

RESUMO

Integrative genetic elements (IGEs) are mobile multigene DNA units that integrate into and excise from host bacterial genomes. Each IGE usually targets a specific site within a conserved host gene, integrating in a manner that preserves target gene function. However, a small number of bacterial genes are known to be inactivated upon IGE integration and reactivated upon excision, regulating phenotypes of virulence, mutation rate, and terminal differentiation in multicellular bacteria. The list of regulated gene integrity (RGI) cases has been slow-growing because IGEs have been challenging to precisely and comprehensively locate in genomes. We present software (TIGER) that maps IGEs with unprecedented precision and without attB site bias. TIGER uses a comparative genomic, ping-pong BLAST approach, based on the principle that the IGE integration module (i.e. its int-attP region) is cohesive. The resultant IGEs from 2168 genomes, along with integrase phylogenetic analysis and gene inactivation tests, revealed 19 new cases of genes whose integrity is regulated by IGEs (including dut, eccCa1, gntT, hrpB, merA, ompN, prkA, tqsA, traG, yifB, yfaT and ynfE), as well as recovering previously known cases (in sigK, spsM, comK, mlrA and hlb genes). It also recovered known clades of site-promiscuous integrases and identified possible new ones.


Assuntos
Elementos de DNA Transponíveis , Genes Bacterianos , Software , Algoritmos , Sítios de Ligação Microbiológicos , Genoma Arqueal , Genoma Bacteriano , Genômica/métodos , Integrases/classificação , Integrases/genética , Filogenia , Recombinação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA