Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
2.
Cancers (Basel) ; 16(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38473371

RESUMO

Rhabdomyosarcoma (RMS) is a rare soft tissue sarcoma (STS) that predominantly affects children and teenagers. It is the most common STS in children (40%) and accounts for 5-8% of total childhood malignancies. Apart from surgery and radiotherapy in eligible patients, standard chemotherapy is the only therapeutic option clinically available for RMS patients. While survival rates for this childhood cancer have considerably improved over the last few decades for low-risk and intermediate-risk cases, the mortality rate remains exceptionally high in high-risk RMS patients with recurrent and/or metastatic disease. The intensification of chemotherapeutic protocols in advanced-stage RMS has historically induced aggravated toxicity with only very modest therapeutic gain. In this review, we critically analyse what has been achieved so far in RMS therapy and provide insight into how a diverse group of drug-metabolising enzymes (DMEs) possess the capacity to modify the clinical efficacy of chemotherapy. We provide suggestions for new therapeutic strategies that exploit the presence of DMEs for prodrug activation, targeted chemotherapy that does not rely on DMEs, and RMS-molecular-subtype-targeted therapies that have the potential to enter clinical evaluation.

3.
Nanomedicine (Lond) ; 18(4): 343-366, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-37140535

RESUMO

Background: The present research was designed to develop a nanoemulsion (NE) of triphenylphosphine-D-α-tocopheryl-polyethylene glycol succinate (TPP-TPGS1000) and paclitaxel (PTX) to effectively deliver PTX to improve breast cancer therapy. Materials & methods: A quality-by-design approach was applied for optimization and in vitro and in vivo characterization were performed. Results: The TPP-TPGS1000-PTX-NE enhanced cellular uptake, mitochondrial membrane depolarization and G2M cell cycle arrest compared with free-PTX treatment. In addition, pharmacokinetics, biodistribution and in vivo live imaging studies in tumor-bearing mice showed that TPP-TPGS1000-PTX-NE had superior performance compared with free-PTX treatment. Histological and survival investigations ascertained the nontoxicity of the nanoformulation, suggesting new opportunities and potential to treat breast cancer. Conclusion: TPP-TPGS1000-PTX-NE improved the efficacy of breast cancer treatment by enhancing its effectiveness and decreasing drug toxicity.


Assuntos
Paclitaxel , Vitamina E , Camundongos , Animais , Paclitaxel/farmacologia , Distribuição Tecidual , Vitamina E/farmacologia , Apoptose , Linhagem Celular Tumoral , Polietilenoglicóis/farmacologia
4.
Pharmaceuticals (Basel) ; 16(4)2023 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-37111319

RESUMO

Nanotechnology has emerged as an inspiring tool for the effective delivery of drugs to help treat Coronary heart disease (CHD) which represents the most prevalent reason for mortality and morbidity globally. The current study focuses on the assessment of the cardioprotective prospective ofanovel combination nanoformulation of sericin and carvedilol. Sericin is a silk protein obtained from Bombyx mori cocoon and carvedilol is a synthetic nonselective ß-blocker. In this present study, preparation of chitosan nanoparticles was performed via ionic gelation method and were evaluated for cardioprotective activity in doxorubicin (Dox)-induced cardiotoxicity. Serum biochemical markers of myocardial damage play a substantial role in the analysis of cardiovascular ailments and their increased levels have been observed to be significantly decreased in treatment groups. Treatment groups showed a decline in the positivity frequency of the Troponin T test as well. The NTG (Nanoparticle Treated Group), CSG (Carvedilol Standard Group), and SSG (Sericin Standard Group) were revealed to have reduced lipid peroxide levels (Plasma and heart tissue) highly significantly at a level of p < 0.01 in comparison with the TCG (Toxic Control Group). Levels of antioxidants in the plasma and the cardiac tissue were also established to be within range of the treated groups in comparison to TCG. Mitochondrial enzymes in cardiac tissue were found to be elevated in treated groups. Lysosomal hydrolases accomplish a significant role in counteracting the inflammatory pathogenesis followed by disease infliction, as perceived in the TCG group. These enzyme levels in the cardiac tissue were significantly improved after treatment with the nanoformulation. Total collagen content in the cardiac tissue of the NTG, SSG, and CSG groups was established to be highly statistically significant at p < 0.001 as well as statistically significant at p < 0.01, respectively. Hence, the outcomes of this study suggest that the developed nanoparticle formulation is effective against doxorubicin-induced cardiotoxicity.

5.
Eur J Pharmacol ; 946: 175623, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-36871666

RESUMO

Activation of the renin-angiotensin system (RAS), by Angiotensin converting enzyme/Angiotensin II/Angiotensin receptor-1 (ACE/Ang II/AT1 R) axis elicits amyloid deposition and cognitive impairment. Furthermore, ACE2 induced release of Ang-(1-7) binds with the Mas receptor and autoinhibits ACE/Ang II/AT1 axis activation. Inhibition of ACE by perindopril has been reported to improve memory in preclinical settings. However, the functional significance and mechanism by which ACE2/Mas receptor regulate cognitive functions and amyloid pathology is not known. The present study is aimed to determine the role of ACE2/Ang-(1-7)/Mas receptor axis in STZ induced rat model of Alzheimer's disease (AD). We have used pharmacological, biochemical and behavioural approaches to identify the role of ACE2/Ang-(1-7)/Mas receptor axis activation on AD-like pathology in both in vitro and invivo models. STZ treatment enhances ROS formation, inflammation markers and NFκB/p65 levels which are associated with reduced ACE2/Mas receptor levels, acetylcholine activity and mitochondrial membrane potential in N2A cells. DIZE mediated ACE2/Ang-(1-7)/Mas receptor axis activation resulted in reduced ROS generation, astrogliosis, NFκB level and inflammatory molecules and improved mitochondrial functions along with Ca2+ influx in STZ treated N2A cells. Interestingly, DIZE induced activation of ACE2/Mas receptor significantly restored acetylcholine levels and reduced amyloid-beta and phospho-tau deposition in cortex and hippocampus that resulted in improved cognitive function in STZ induced rat model of AD-like phenotypes. Our data indicate that ACE2/Mas receptor activation is sufficient to prevented cognitive impairment and progression of amyloid pathology in STZ induced rat model of AD-like phenotypes. These findings suggest the potential role of ACE2/Ang-(1-7)/Mas axis in AD pathophysiology by regulating inflammation cognitive functions.


Assuntos
Doença de Alzheimer , Ratos , Animais , Doença de Alzheimer/patologia , Estreptozocina , Enzima de Conversão de Angiotensina 2/genética , Espécies Reativas de Oxigênio , Acetilcolina , Peptidil Dipeptidase A/metabolismo , Cognição , Inflamação/tratamento farmacológico , Fenótipo , Fragmentos de Peptídeos/farmacologia , Angiotensina I/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Angiotensina II/farmacologia
6.
Trends Mol Med ; 29(3): 173-187, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36585352

RESUMO

Biodiversity is the measure of the variation of lifeforms in a given ecological system. Biodiversity provides ecosystems with the robustness, stability, and resilience that sustains them. This is ultimately essential for our survival because we depend on the services that natural ecosystems provide (food, fresh water, air, climate, and medicine). Despite this, human activity is driving an unprecedented rate of biodiversity decline, which may jeopardize the life-support systems of the planet if no urgent action is taken. In this article we show why biodiversity is essential for human health. We raise our case and focus on the biomedicine services that are enabled by biodiversity, and we present known and novel approaches to promote biodiversity conservation.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Humanos , Biodiversidade , Água Doce
7.
ACS Chem Neurosci ; 13(23): 3378-3388, 2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-36351248

RESUMO

Alzheimer's disease (AD) is a debilitating progressive neurodegenerative disorder characterized by the loss of cognitive function. A major challenge in treating this ailment fully is its multifactorial nature, as it is associated with effects like deposition of Aß plaques, oxidative distress, inflammation of neuronal cells, and low levels of the neurotransmitter acetylcholine (ACh). In the present work, we demonstrate the design, synthesis, and biological activity of peptide conjugates by coupling a H2S-releasing moiety to the peptides known for their Aß antiaggregating properties. These conjugates release H2S in a slow and sustained manner, due to the formation of self-assembled structures and delivered a significant amount of H2S within Caenorhabditis elegans. These conjugates are shown to target multiple factors responsible for the progression of AD: notably, we observed reduction in oxidative distress, inhibition of Aß aggregation, and significantly increased ACh levels in the C. elegans model expressing human Aß.


Assuntos
Peptídeos beta-Amiloides , Caenorhabditis elegans , Humanos , Animais
8.
Semin Cancer Biol ; 86(Pt 2): 46-53, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36030027

RESUMO

Technological advancements in the present era have enhanced drug discovery and development. Nanomedicines are valuable pharmacotherapeutic tools against several diseases and disorders including aging related disorders. The mechanistic association between nanomedicines and molecular modulation have been investigated by many researchers. Notwithstanding the availability of tremendous amount of data, role of nanomedicines in aging related disorders intending inflammasome transfiguration have not been thoroughly reviewed till now. In the present review, we discuss the application of nanomedicines in aging related disorders. Further, we highlight the recent updates on modulated upstream and downstream signalling molecules of inflammasome cascade due to nanomedicines. The review will benefit researchers targeting nanomedicines as a therapeutic approach towards treatment age related disorders through inflammasome inflection.


Assuntos
Nanomedicina , Nanopartículas , Humanos , Inflamassomos , Nanopartículas/uso terapêutico , Sistemas de Liberação de Medicamentos , Senescência Celular
9.
Life (Basel) ; 12(7)2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35888151

RESUMO

The silkworm cocoon has been used in the treatment of various ailments in different Asian countries. This research was designed to evaluate the effect of sericin on myocardial necrosis and hypertrophy in isoproterenol-challenged rats. The rats were administered with sericin (500 and 1000 mg/kg, p.o.) for 28 days, followed by administration of isoprenaline (85 mg/kg, s.c.) on the 29th and 30th days. The cardioprotective activity was assessed by various physical, enzymatic, and histopathological parameters along with apoptotic marker expression. The cardioprotective effect showed that pre-treatment of rats with sericin significantly increased the non-enzymatic antioxidants marker in serum and heart tissue (glutathione, vitamin E, and vitamin C). The results were the same in enzymatic antioxidant marker, mitochondrial enzymes, and protein. The grading of heart, heart/body weight ratio, gross morphology, cardiac markers, oxidative stress markers in serum and heart tissue, glucose, serum lipid profiling and Lysosomal hydrolases, heart apoptotic markers such as MHC expression by western blot, apoptosis by flow cytometry, total myocardial collagen content, fibrosis estimation, myocyte size were significantly decreased when compared with isoproterenol (ISG) group however histopathological studies showed normal architecture of heart in both control and treated rats. The pharmacological study reflects that sericin on both doses i.e., 500 mg/kg and 1000 mg/kg have potent cardioprotective action against the experimental model which was confirmed by various physical, biochemical, and histopathological parameters evaluated further research is required to examine the molecular mechanism of cardioprotective effect of sericin.

10.
RSC Med Chem ; 13(6): 746-760, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35814931

RESUMO

A series of uniquely functionalized 2,3,-dihydro-1H-pyyrolo[3,4-b]quinolin-1-one derivatives were synthesized in one to two steps by utilizing a post-Ugi modification strategy and were evaluated for antileishmanial efficacy against visceral leishmaniasis (VL). Among the library compounds, compound 5m exhibited potential in vitro antileishmanial activity (CC50 = 65.11 µM, SI = 7.79, anti-amastigote IC50 = 8.36 µM). In vivo antileishmanial evaluation of 5m demonstrated 56.2% inhibition in liver and 61.1% inhibition in spleen parasite burden in infected Balb/c mice (12.5 mg kg-1, i.p.). In vitro pharmacokinetic study ascertained the stability of 5m in both simulated gastric fluid and simulated intestinal fluid. All the active compounds passed the PAINS filter and showed no toxicity in in silico predictions.

11.
ACS Appl Mater Interfaces ; 14(11): 13079-13093, 2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35263093

RESUMO

Aggregation of ß-amyloid (Aß42) peptide in the neural extracellular space leads to cellular dysfunction, resulting in Alzheimer's disease (AD). The hydrophobic core of the amyloidogenic Aß42 peptide contains aromatic residues that play an important role in the self-assembly and subsequent aggregation of the peptide. Hence, targeting these hydrophobic core residues by potent low molecular agents can be a promising therapeutic approach toward AD. In the current work, we have developed self-fluorescent solo tryptophan nanoparticles (TNPs) as nanotheranostic systems against AD. We demonstrated that TNPs could significantly inhibit as well as disrupt the fibrils formed by both Aß42 peptide and another reductionist approach-based amyloid model dipeptide, phenylalanine-phenylalanine (FF). More importantly, these nanostructures were nontoxic to neural cells and could protect the neurons from Aß42 peptide and FF aggregate-induced cytotoxicity. In addition, efficacy studies performed in animal model further revealed that the TNPs could rescue spatial and learning memory in intracerebroventricular streptozotocin-administration-induced AD phenotype in rats. Moreover, our pharmacokinetics study further established the BBB permeability and brain delivery potency of TNPs. The inherent excellent fluorescent properties of these nanoparticles could be exploited further to use them as imaging modalities for tagging and detecting FF and Aß42 peptide fibrils. Overall, our results clearly illustrated that the solo TNPs could serve as promising nanotheranostic agents for AD therapy.


Assuntos
Doença de Alzheimer , Nanopartículas , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/química , Animais , Nanopartículas/uso terapêutico , Fragmentos de Peptídeos/química , Ratos , Nanomedicina Teranóstica , Triptofano/farmacologia
12.
Molecules ; 27(2)2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-35056659

RESUMO

PSTi8 is a pancreastatin inhibitory peptide that is effective in the treatment of diabetic models. This study investigates the pharmacokinetic (PK) properties of PSTi8 in Sprague Dawley rats, for the first time. In vitro and in vivo PK studies were performed to evaluate the solubility, stability in plasma and liver microsomes, plasma protein binding, blood-plasma partitioning, bioavailability, dose proportionality, and gender difference in PK. Samples were analyzed using the validated LC-MS/MS method. The solubility of PSTi8 was found to be 9.30 and 25.75 mg/mL in simulated gastric and intestinal fluids, respectively. The protein binding of PSTi8 was estimated as >69% in rat plasma. PSTi8 showed high stability in rat plasma and liver microsomes and the blood-plasma partitioning was >2. The bioavailability of PSTi8 after intraperitoneal and subcutaneous administration was found to be 95.00 ± 12.15 and 78.47 ± 17.72%, respectively, in rats. PSTi8 showed non-linear PK in dose proportionality studies, and has no gender difference in the PK behavior in rats. The high bioavailability of PSTi8 can be due to high water solubility and plasma protein binding, low clearance and volume of distribution. Our in vitro and in vivo findings support the development of PSTi8 as an antidiabetic agent.


Assuntos
Proteínas Sanguíneas/metabolismo , Cromogranina A/antagonistas & inibidores , Microssomos Hepáticos/metabolismo , Fragmentos de Peptídeos/farmacologia , Fragmentos de Peptídeos/farmacocinética , Animais , Disponibilidade Biológica , Feminino , Técnicas In Vitro , Masculino , Microssomos Hepáticos/efeitos dos fármacos , Ligação Proteica , Ratos , Ratos Sprague-Dawley , Distribuição Tecidual
13.
Life Sci ; 286: 119989, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34597609

RESUMO

AIMS: Isoformononetin (IFN), a methoxyl isoflavone present in most of human dietary supplements. However, being a highly potent antioxidant and anti-inflammatory molecule, its activity against neuronal oxidative stress and neuroinflammation has not been explored till now. The present study was inquested to assess the antioxidant, anti-apoptotic and anti-inflammatory activity of IFN against streptozotocin induced neuroinflammation in different brain regions of rat. MAIN METHODS: Four groups of animals were subjected to treatment as control, toxic control (STZ; single intracerebrovascular injection), third group (STZ + IFN; 20 mg/kg p.o.), fourth group (IFN) for 14 days. The different brain regions of rats were evaluated for inflammatory, apoptotic and biochemical antioxidant markers. The brain tissues were further assessed for gene expression, immunohistochemical and western blotting examination for localization of inflammasome cascade expression that plays a pivotal role in neuroinflammation. KEY FINDINGS: The modulation in oxidant/antioxidant status after exposure of STZ was significantly balanced after administration of IFN to rats. Further, IFN was also found to be an apoptotic agent as it modulates the apoptotic gene (Bax) and anti-apoptotic gene (BcL2) expression. IFN significantly curtailed the augmented protein expression of NLRP3, NLRP2, ASC, NFκBP65, IL-1ß and caspase-1 due to STZ administration in cortex and hippocampus rat brain regions. SIGNIFICANCE: The aforementioned results proclaim the neuroprotective functioning of IFN against STZ induced inflammation. IFN significantly prevents the neuroinflammation by decreasing the generation of ROS that reduces the activation of NLRP3/ASC/IL-1 axis thereby exerting neuroprotection as evidenced in rat model of STZ induced neuroninflammation.


Assuntos
Antioxidantes/farmacologia , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Encefalite/prevenção & controle , Interleucina-1/metabolismo , Isoflavonas/farmacologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Estreptozocina/toxicidade , Animais , Modelos Animais de Doenças , Encefalite/induzido quimicamente , Encefalite/metabolismo , Encefalite/patologia , Expressão Gênica/fisiologia , Interferons/fisiologia , Peroxidação de Lipídeos/efeitos dos fármacos , Óxido Nítrico/biossíntese , Estresse Oxidativo/efeitos dos fármacos , Coelhos , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo
14.
Brain Res Bull ; 172: 164-179, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33895271

RESUMO

Psychological and physical stress play a pivotal role in etiology of anxiety and depression. Chronic psychological and physical stress modify various physiological phenomena, as a consequence of which oxidative stress, decreased neurotransmitter level, elevated corticosterone level and altered NSC homeostasis is observed. However, the precise mechanism by which chronic stress induce anxious depression and modify internal milieu is still unknown. Herein, we show that exposure to CUS increase oxidative stress, microgliosis, astrogliosis while it reduces hippocampal NSC proliferation, neuronal differentiation and maturation in adult rats. CUS exposure in rats reduce dopamine and serotonin level in cortex and hippocampus, which result in increased anxiety and depression-like phenotypes. We also found elevated level of NF-κB and TNF-α while decreased anti-inflammatory cytokine IL-10 level, that led to increased expression of Bax and cleaved Caspase-3 whereas down regulation of antiapoptotic protein Bcl2. Additionally, CUS altered adult hippocampal neurogenesis, increased gliosis and neuronal apoptosis in cerebral cortex and hippocampus which might be associated with reduced AKT and increased ERK signaling, as seen in the rat brain tissue. Taken together, these results indicate that CUS induce oxidative stress and neuroinflammation which directly affects NSC dynamics, monoamines levels and behavioral functions in adult rats.


Assuntos
Ansiedade/metabolismo , Apoptose/fisiologia , Depressão/metabolismo , Hipocampo/metabolismo , Neurogênese/fisiologia , Estresse Psicológico/metabolismo , Animais , Comportamento Animal/fisiologia , Inflamação/metabolismo , Peroxidação de Lipídeos/fisiologia , Masculino , Estresse Oxidativo/fisiologia , Ratos , Ratos Sprague-Dawley
15.
Phytomedicine ; 84: 153484, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33667839

RESUMO

BACKGROUND: Celecoxib (CXB), a selective COX-2 inhibitor NSAID, has exhibited prominent anti-proliferative potential against numerous cancers. However, its low bioavailability and long term exposure related cardiovascular side effects, limit its clinical application. In order to overcome these limitations, natural bioactive compounds with lower toxicity profile are used in combination with therapeutic drugs. Therfore, in this study Piperine (PIP), a natural chemo-preventive agent possessing drug bioavailability enhancing properties, was considered to be used in combination with low doses of CXB. PURPOSE: We hypothesized that the combination of PIP with CXB will have a synergistic anti-proliferative effect on colon cancer cells. STUDY DESIGN: The potency of PIP and CXB alone and in combination was evaluated in HT-29 human colon adenocarcinoma cells and mechanism of growth inhibition was investigated by analyzing the players in apoptotic and Wnt/ß-catenin signaling pathways. METHODS: The effect of PIP on the oral bioavailability of CXB in mice was investigated using HPLC analysis. The study investigated the synergistic anti-proliferative effect of CXB and PIP on HT-29 cells and IEC-6 non-tumorigenic rat intestinal epithelial cells by SRB cell viability assay. Further, the cellular and molecular mechanism(s) involved in the anti-proliferative combinatorial effect was extensively explored in HT-29 cells by flow cytometry and western blotting. The in vivo efficacy of this combination was studied in CT26.WT tumor syngeneic Balb/c mice model. RESULTS: PIP as a bioenhancer increased the oral bioavailability of CXB (129%). The IC50 of CXB and PIP were evaluated to select doses for combination treatment of HT-29 cells. The drug combinations having combination index (CI) less than 1 were screened using CompuSyn software. These combinations were significantly cytotoxic to HT-29 cells but IEC-6 were least effected. Further, the mechanism behind CXB and PIP mediated cell death was explored. The co-treatment led to reactive oxygen species generation, mitochondrial dysfunction, caspase activation and enhanced apoptosis in HT-29 cells. Additionally, the combination treatment synergistically modulated Wnt/ß-catenin pathway, downregulated the stemness markers and boosted therapeutic response in CT26 syngeneic Balb/c mice. CONCLUSION: The outcomes of the study suggests that combining CXB and PIP offers a novel approach for the treatment of colon cancer.


Assuntos
Alcaloides/farmacologia , Antineoplásicos/farmacologia , Benzodioxóis/farmacologia , Celecoxib/farmacologia , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/patologia , Piperidinas/farmacologia , Alcamidas Poli-Insaturadas/farmacologia , Via de Sinalização Wnt/efeitos dos fármacos , beta Catenina/metabolismo , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Inibidores de Ciclo-Oxigenase 2/farmacologia , Sinergismo Farmacológico , Humanos , Camundongos , Ratos
16.
Free Radic Biol Med ; 156: 70-82, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32561319

RESUMO

Deoxynivalenol is a trichothecene mycotoxin which naturally contaminates small grain, cereals intended for human and animal consumption. Investigations for dermal toxicity of DON has been needed and highlighted by WHO. Previous studies on dermal toxicity suggest that DON has DNA damaging potential leading to skin tumor initiation in mice skin. However, considering its toxicological manifestations arising after dermal exposure, strategies for its prevention/protection are barely available in literatute. Collectively, our study demonstrated that N-acetylcysteine (NAC), precursor of glutathione, significantly alters the genotoxic potential of DON. Further NAC in combination with Celecoxib (CXB) inhibits tumor growth by altering antioxidant status and increasing autophagy in DON initiated Swiss mice. Despite the broad spectrum use of CXB, its use is limited by the concerns about its adverse effects on the cardiovascular system. Serum parameters and histology analysis revealed that CXB (2 mg) when applied topically for 24 weeks did not impart any cardiovascular toxicity which could be because skin permeation potential of CXB was quite low when analyzed through HPLC analysis. Although the anticancer effects of CXB and NAC have been studied, however, the combination of NAC and CXB has yet not been explored for any cancer treatment. Therefore our observations provide additional insights into the therapeutic effects of combinatorial treatment of CXB and NAC against skin tumor prevention. This approach might form a novel alternative strategy for skin cancer treatment as well as skin associated toxicities caused by mycotoxins such as DON. This combinatorial approach can overcome the limitations associated with the use of CXB for long term as topical application of the same seems to be safe in comparison to the oral mode of administration.


Assuntos
Acetilcisteína , Neoplasias Cutâneas , Animais , Autofagia , Celecoxib/toxicidade , Camundongos , Tricotecenos
17.
Chem Biol Interact ; 326: 109128, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32416088

RESUMO

Exposure to mycotoxins is mostly by ingestion but also occurs by the dermal and inhalation routes. The present study for the first time demonstrated that mycotoxin Deoxynivalenol (DON), permeates through Swiss albino mice skin, which demands awareness of health risks in people who are dermally exposed to mycotoxins especially agricultural farmers. Despite the widespread contamination of DON in food commodities studies to alleviate DON's toxicity are sparsely reported. Thus effective measures to combat mycotoxins associated toxicity remains an imperative aspect to be considered from the angle of dermal exposure. Topical application of Celecoxib (1-2 mg), followed by DON (100 µg) application on the dorsal side of mice, resulted in substantial decrease in DON-induced (i) edema, hyperplasia, cell proliferation (ii) inhibition of cytokine and prostaglandin-E2 levels (iii) phosphorylation of ERK1/2, JNK, p38, MAPKKs, CREB, P90-RSK (iv) downregulation of c-Jun, c- Fos, phospho-NF-kB and their downstream target proteins cyclin D1 and COX-2. Using Ro-31-8220 (Protein-Kinase-C inhibitor), it was observed PKC was responsible for DON induced upregulation of COX-2 and iNOS proteins. Treatment of Celecoxib decreased DON-induced translocation of Protein Kinase C isozymes (α,ε,γ), demonstrating the role of PKC in DON-mediated biochemical and molecular alterations responsible for its dermal toxicity. The present findings indicate that topical application of celecoxib is effective in the management of inflammatory skin disorders induced by foodborne fungal toxin DON. The skin permeation potential of Celecoxib, a selective cyclooxygenase-2 (COX-2) inhibitor NSAID, was also assessed, and the results indicated that the permeation was relatively lower as compared to the oral mode of administration. Hence topical use of celecoxib may be preferred over oral dosing because of lower systemic absorption and to avoid the unwanted side effects. This study provides a prospect for exploring the clinical efficacy of topically applied COX-2 inhibitors for the management of inflammatory skin disorders induced by foodborne fungal toxins.


Assuntos
Celecoxib/farmacologia , Proliferação de Células/efeitos dos fármacos , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Proteína Quinase C/metabolismo , Pele/efeitos dos fármacos , Tricotecenos/efeitos adversos , Animais , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase 2/farmacologia , Feminino , Inflamação/metabolismo , Camundongos , Transdução de Sinais/efeitos dos fármacos , Pele/metabolismo , Dermatopatias/tratamento farmacológico , Dermatopatias/metabolismo
18.
Neurotoxicology ; 79: 1-10, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32151614

RESUMO

AIM: Metronidazole, a nitroimidazole derived antibiotic used to treat many bacterial infections, is reported to penetrate the blood brain barrier after long term administration resulting into neuronal toxicity. Further, quercetin, a polyphenol flavonoid is reported to exhibit neuroprotective activity but its pharmacodynamics interaction against metronidazole induced neurotoxicity. Therefore, the present study was designed to evaluate the postulated mechanism of metronidazole induced neurotoxicity and potential neuroprotective role of quercetin. MAIN METHODS: Animals (Sprague Dawley) rats were randomly divided into five groups such as control, metronidazole (135 mg/kg), quercetin (100 mg/kg), metronidazole (135 mg/kg) + quercetin (50 mg/kg), and metronidazole (135 mg/kg) + quercetin (100 mg/kg). The brain tissues were evaluated for tissue cyclo-oxygenase, lipoxygenase, nitrite levels, inflammatory and antioxidant biomarkers. The brain tissues were further scrutinized histopathologically for neuronal degeneration. Western blotting analysis was performed for the localization of protein expression for Bax, Bcl2, iNOS, eNOS and caspase-3. KEY FINDINGS: The metronidazole significantly alters the antioxidant levels, inflammatory mediators and morphological changes in the brain tissue. Metronidazole also induces iNOS, Bax and caspase 3 protein expressions whilst decreases the expression of Bcl2 and eNOS in the brain tissue. Metronidazole administration causes a momentous increase in tissue inflammatory markers. SIGNIFICANCE: The metronidazole (oral) administration causes remarkably neurotoxicity effects and the same could be attributed to the fact that metronidazole has the ability to cross the blood brain barrier and transforms the enzymatic activity of various biomarkers present in the brain. From the results, it could be hypothesized that metronidazole causes neurotoxicity by hindering the proportion of antioxidants in the brain tissue and inducing nitric oxide synthesis along with apoptosis. However, quercetin demonstrated a significant protective effect on neuronal toxicity precipitated through metronidazole.


Assuntos
Anti-Inflamatórios/farmacologia , Encéfalo/efeitos dos fármacos , Citocinas/metabolismo , Mediadores da Inflamação/metabolismo , Fármacos Neuroprotetores/farmacologia , Síndromes Neurotóxicas/prevenção & controle , Óxido Nítrico Sintase Tipo III/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Quercetina/farmacologia , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Encéfalo/imunologia , Encéfalo/metabolismo , Modelos Animais de Doenças , Masculino , Metronidazol , Síndromes Neurotóxicas/etiologia , Síndromes Neurotóxicas/imunologia , Síndromes Neurotóxicas/metabolismo , Óxido Nítrico/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais
19.
Bone ; 135: 115305, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32126313

RESUMO

Phosphodiesterases (PDEs) hydrolyze cyclic nucleotides and thereby regulate diverse cellular functions. The reports on the skeletal effects of PDE inhibitors are conflicting. Here, we screened 17 clinically used non-xanthine PDE inhibitors (selective and non-selective) using mouse calvarial osteoblasts (MCO) where the readout was osteoblast differentiation. From this screen, we identified sildenafil and vardenafil (both PDE5 inhibitors) having the least osteogenic EC50. Both drugs significantly increased vascular endothelial growth factor (VEGF) and VEGF receptor 2 (VEGFR2) expressions in MCO and the nitric oxide synthase inhibitor L-NAME completely blocked VEGF expression induced by these drugs. Sunitinib, a tyrosine receptor kinase inhibitor that also blocks VEGFR2 blocked sildenafil-/vardenafil-induced osteoblast differentiation. At half of their human equivalent doses, i.e. 6.0 mg/kg sildenafil and 2.5 mg/kg vardenafil, the maximum bone marrow level of sildenafil was 32% and vardenafil was 21% of their blood levels. At these doses, both drugs enhanced bone regeneration at the femur osteotomy site and completely restored bone mass, microarchitecture, and strength in OVX mice. Furthermore, both drugs increased surface referent bone formation and serum bone formation marker (P1NP) without affecting the resorption marker (CTX-1). Both drugs increased the expression of VEGF and VEGFR2 in bones and osteoblasts and increased skeletal vascularity. Sunitinib completely blocked the bone restorative and vascular effects of sildenafil and vardenafil in OVX mice. Taken together, our study suggested that sildenafil and vardenafil at half of their adult human doses completely reversed osteopenia in OVX mice by an osteogenic mechanism that was associated with enhanced skeletal vascularity.


Assuntos
Inibidores da Fosfodiesterase 5 , Fator A de Crescimento do Endotélio Vascular , Animais , Imidazóis/farmacologia , Camundongos , Inibidores da Fosfodiesterase 5/farmacologia , Piperazinas/farmacologia , Citrato de Sildenafila/farmacologia , Citrato de Sildenafila/uso terapêutico , Sulfonas/farmacologia , Sunitinibe , Triazinas/farmacologia , Dicloridrato de Vardenafila/farmacologia
20.
J Pharm Biomed Anal ; 180: 112978, 2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-31855725

RESUMO

Medicarpin, one of the active constituents isolated from the extract of Butea monosperma, has been shown to have various pharmacological activities including potent anti-osteoporotic properties. The aim of this study was to investigate the oral pharmacokinetics, tissue distribution and excretion of medicarpin following single oral dose administration in female rats. Oral pharmacokinetics was explored at 5 and 20 mg/kg while tissue distribution, urinary and fecal excretion were studied following 20 mg/kg oral dose. Medicarpin was quantified in rat plasma, urine, feces and tissue samples using a validated LC-MS/MS method following reverse-phase HPLC separation on RP18 column (4.6 mm × 50 mm, 5.0 µm) using methanol and 10 mM ammonium acetate (pH 4.0) as mobile phase in the ratio of 80:20 (v/v) at a flow rate of 0.8 mL/min. The oral bioavailability of medicarpin was found to be low with low systemic levels. The concentration in tissues was significantly higher than plasma. Highest tissue concentrations were found in the liver followed by bone marrow. Urinary and fecal excretion of medicarpin was < 1 %. In conclusion, medicarpin was found to be highly distributed in body tissues and minimally excreted via urine or feces.


Assuntos
Líquidos Corporais/metabolismo , Osteoporose/tratamento farmacológico , Pterocarpanos , Animais , Disponibilidade Biológica , Análise Química do Sangue , Cromatografia Líquida de Alta Pressão , Fezes , Feminino , Limite de Detecção , Extração Líquido-Líquido , Pterocarpanos/administração & dosagem , Pterocarpanos/síntese química , Pterocarpanos/farmacocinética , Ratos , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA