RESUMO
BACKGROUND: Most patients with chronic heart failure have detectable troponin concentrations when evaluated by high-sensitivity assays. The prognostic relevance of this finding has not been clearly established so far. We aimed to assess high-sensitivity troponin assay for risk stratification in chronic heart failure through a meta-analysis approach. METHODS: Medline, EMBASE, Cochrane Library, and Scopus were searched in April 2017 by 2 independent authors. The terms were "troponin" AND "heart failure" OR "cardiac failure" OR "cardiac dysfunction" OR "cardiac insufficiency" OR "left ventricular dysfunction." Inclusion criteria were English language, clinical stability, use of a high-sensitivity troponin assay, follow-up studies, and availability of individual patient data after request to authors. Data retrieved from articles and provided by authors were used in agreement with the PRISMA statement. The end points were all-cause death, cardiovascular death, and hospitalization for cardiovascular cause. RESULTS: Ten studies were included, reporting data on 11 cohorts and 9289 patients (age 66±12 years, 77% men, 60% ischemic heart failure, 85% with left ventricular ejection fraction <40%). High-sensitivity troponin T data were available for all patients, whereas only 209 patients also had high-sensitivity troponin I assayed. When added to a prognostic model including established risk markers (sex, age, ischemic versus nonischemic etiology, left ventricular ejection fraction, estimated glomerular filtration rate, and N-terminal fraction of pro-B-type natriuretic peptide), high-sensitivity troponin T remained independently associated with all-cause mortality (hazard ratio, 1.48; 95% confidence interval, 1.41-1.55), cardiovascular mortality (hazard ratio, 1.40; 95% confidence interval, 1.33-1.48), and cardiovascular hospitalization (hazard ratio, 1.42; 95% confidence interval, 1.36-1.49), over a median 2.4-year follow-up (all P<0.001). High-sensitivity troponin T significantly improved risk prediction when added to a prognostic model including the variables above. It also displayed an independent prognostic value for all outcomes in almost all population subgroups. The area under the curve-derived 18 ng/L cutoff yielded independent prognostic value for the 3 end points in both men and women, patients with either ischemic or nonischemic etiology, and across categories of renal dysfunction. CONCLUSIONS: In chronic heart failure, high-sensitivity troponin T is a strong and independent predictor of all-cause and cardiovascular mortality, and of hospitalization for cardiovascular causes, as well. This biomarker then represents an additional tool for prognostic stratification.
Assuntos
Insuficiência Cardíaca/diagnóstico , Troponina T/sangue , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/sangue , Causas de Morte , Doença Crônica , Feminino , Insuficiência Cardíaca/sangue , Insuficiência Cardíaca/mortalidade , Insuficiência Cardíaca/terapia , Hospitalização , Humanos , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Prognóstico , Medição de Risco , Fatores de Risco , Fatores de TempoRESUMO
Functional Electrical Stimulation (FES) cycling could benefit people with Spinal Cord Injury (SCI). The FES cycling involves large muscle groups during the training, and thus improves the cardiovascular function, increases the muscle bulk and reduces the secondary complications. This study developed an outdoor FES exercise cycling system for complete SCI persons to exercise their lower limbs without putting extra load on upper extremities. The mechanical structure of the cycling system was specially redesigned to secure the SCI persons in the cycling system. A six-phase-angle-driven control algorithm was designed to stimulate the quadriceps and hamstrings muscles. Two training modes, i.e., continuous mode and on-off mode, were designed and tested to increase the duration of the electrical stimulation to reduce muscle fatigue. A complete SCI volunteer participated in this training for six months. Beneficial effects could be observed such as paralyzed lower limb muscles had regained the muscle mass and reduced edema from the improved blood circulation. Moreover, the SCI volunteer attended the Cybathlon FES-bike competition in Zurich in October 2016 with Team Phoenix from the CUHK.
Assuntos
Ciclismo , Terapia por Estimulação Elétrica , Extremidade Inferior/fisiopatologia , Traumatismos da Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/reabilitação , Adulto , Terapia por Estimulação Elétrica/instrumentação , Terapia por Estimulação Elétrica/métodos , Eletrodos , Feminino , Humanos , Músculo Esquelético/fisiopatologia , Adulto JovemRESUMO
In this study we designed a Functional Electrical Stimulation (FES) trike for a female subject with spinal cord injury to exercise her lower limbs and improve her lower limb muscle condition for attending the 2016 Cybathlon FES bike competition. Our FES pilot was the only female participant, in the FES cycling competition and she rode for Team Phoenix from the Chinese University of Hong Kong. Due to the weakness of muscles in the lower limb of the subject, and due to scoliosis over her thoracolumbar aéra, the mechanical structure of the trike had to be tailor-made to ensure she sat on the bike in a safe and secure position. A six-phase angle-driven stimulation pattern was developed to stimulate quadriceps and hamstrings without gluteus muscles for contraction through four surface electrodes, thereby creating a cycling movement. To improve the cycling endurance and reduce the muscle fatigue, an on-off mode was developed for controlling the stimulation time that allowed the subject to cycle for 20s, then pause while the trike advanced without stimulation for 5s, followed by a subsequent 20 sec stimulation, to continue cycling. The pilot participated in the training procedure including training exercise at home, trike fitting in the trike by modifying the mechanical structure, and conducting the cycling exercise for six months. We observed significant improvements in the pilot's lower limb condition. The on-off mode enabled our pilot to extend her cycling endurance effectively, from 1 min to 2.5 mins and the distance from 62m to 100m. Over the eight minutes time limit, our team successfully finished 100 m in the Cybathlon FES.