Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
APL Bioeng ; 8(2): 026105, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38680995

RESUMO

The viscoelasticity of monoclonal antibodies (mAbs) is important during their production, formulation, and drug delivery. High concentration mAbs can provide higher efficacy therapeutics (e.g., during immunotherapy) and improved efficiency during their production (economy of scale during processing). Two humanized mAbs were studied (mAb-1 and mAb-2) with differing isoelectric points. Using high speed particle tracking microrheology, we demonstrated that the mAb solutions have significant viscoelasticities above concentrations of 40 mg/ml. Power law viscoelasticity was observed over the range of time scales (10-4-1 s) probed for the high concentration mAb suspensions. The terminal viscosity demonstrated an exponential dependence on mAb concentration (a modified Mooney relationship) as expected for charged stabilized Brownian colloids. Gelation of the mAbs was explored by lowering the pH of the buffer and a power law scaling of the gelation transition was observed, i.e., the exponent of the anomalous diffusion of the probe particles scaled inversely with the gelation time.

2.
Nano Lett ; 24(7): 2234-2241, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38320294

RESUMO

Negative capacitance at low frequencies for spiking neurons was first demonstrated in 1941 (K. S. Cole) by using extracellular electrodes. The phenomenon subsequently was explained by using the Hodgkin-Huxley model and is due to the activity of voltage-gated potassium ion channels. We show that Escherichia coli (E. coli) biofilms exhibit significant stable negative capacitances at low frequencies when they experience a small DC bias voltage in electrical impedance spectroscopy experiments. Using a frequency domain Hodgkin-Huxley model, we characterize the conditions for the emergence of this feature and demonstrate that the negative capacitance exists only in biofilms containing living cells. Furthermore, we establish the importance of the voltage-gated potassium ion channel, Kch, using knock-down mutants. The experiments provide further evidence for voltage-gated ion channels in E. coli and a new, low-cost method to probe biofilm electrophysiology, e.g., to understand the efficacy of antibiotics. We expect that the majority of bacterial biofilms will demonstrate negative capacitances.


Assuntos
Espectroscopia Dielétrica , Escherichia coli , Neurônios/fisiologia , Bactérias , Biofilmes
3.
Small ; 19(3): e2204428, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36417574

RESUMO

Recent developments in antimicrobial peptides (AMPs) have focused on the rational design of short sequences with less than 20 amino acids due to their relatively low synthesis costs and ease of correlation of the structure-function relationship. However, gaps remain in the understanding of how short cationic AMPs interact with the bacterial outer and inner membranes to affect their antimicrobial efficacy and dynamic killing. The membrane-lytic actions of two designed AMPs, G(IIKK)3 I-NH2 (G3 ) and G(IIKK)4 I-NH2 (G4 ), and previously-studied controls GLLDLLKLLLKAAG-NH2 (LDKA, biomimetic) and GIGAVLKVLTTGLPALISWIKRKR-NH2 (Melittin, natural) are examined. The mechanistic processes of membrane damage and the disruption strength of the four AMPs are characterized by molecular dynamics simulations and experimental measurements including neutron reflection and scattering. The results from the combined studies are characterized with distinctly different intramembrane nanoaggregates formed upon AMP-specific binding, reflecting clear influences of AMP sequence, charge and the chemistry of the inner and outer membranes. G3 and G4 display different nanoaggregation with the outer and inner membranes, and the smaller sizes and further extent of insertion of the intramembrane nanoaggregates into bacterial membranes correlate well with their greater antimicrobial efficacy and faster dynamic killing. This work demonstrates the crucial roles of intramembrane nanoaggregates in optimizing antimicrobial efficacy and dynamic killing.


Assuntos
Anti-Infecciosos , Peptídeos Antimicrobianos , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Anti-Infecciosos/farmacologia , Bactérias , Simulação de Dinâmica Molecular
4.
J Ind Microbiol Biotechnol ; 49(1)2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-34718634

RESUMO

The control of microorganisms is a key objective in disease prevention and in medical, industrial, domestic, and food-production environments. Whilst the effectiveness of biocides in these contexts is well-evidenced, debate continues about the resistance risks associated with their use. This has driven an increased regulatory burden, which in turn could result in a reduction of both the deployment of current biocides and the development of new compounds and formulas. Efforts to balance risk and benefit are therefore of critical importance and should be underpinned by realistic methods and a multi-disciplinary approach, and through objective and critical analyses of the literature. The current literature on this topic can be difficult to navigate. Much of the evidence for potential issues of resistance generation by biocides is based on either correlation analysis of isolated bacteria, where reports of treatment failure are generally uncommon, or laboratory studies that do not necessarily represent real biocide applications. This is complicated by inconsistencies in the definition of the term resistance. Similar uncertainties also apply to cross-resistance between biocides and antibiotics. Risk assessment studies that can better inform practice are required. The resulting knowledge can be utilised by multiple stakeholders including those tasked with new product development, regulatory authorities, clinical practitioners, and the public. This review considers current evidence for resistance and cross-resistance and outlines efforts to increase realism in risk assessment. This is done in the background of the discussion of the mode of application of biocides and the demonstrable benefits as well as the potential risks.


Assuntos
Desinfetantes , Antibacterianos/farmacologia , Bactérias/genética , Biofísica , Desinfetantes/farmacologia , Farmacorresistência Bacteriana , Testes de Sensibilidade Microbiana
5.
Sci Rep ; 11(1): 16230, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34376706

RESUMO

The endoplasmic reticulum (ER) is a eukaryotic subcellular organelle composed of tubules and sheet-like areas of membrane connected at junctions. The tubule network is highly dynamic and undergoes rapid and continual rearrangement. There are currently few tools to evaluate network organisation and dynamics. We quantified ER network organisation in Vero and MRC5 cells, and developed an analysis workflow for dynamics of established tubules in live cells. The persistence length, tubule length, junction coordination number and angles of the network were quantified. Hallmarks of imbalances in ER tension, indications of interactions with microtubules and other subcellular organelles, and active dynamics were observed. Clear differences in dynamic behaviour were observed for established tubules at different positions within the cell using itemset mining. We found that tubules with activity-driven fluctuations were more likely to be located away from the cell periphery and a population of peripheral tubules with no signs of active motion was found.


Assuntos
Retículo Endoplasmático/fisiologia , Fibroblastos/fisiologia , Pulmão/fisiologia , Microtúbulos/fisiologia , Animais , Chlorocebus aethiops , Fibroblastos/citologia , Humanos , Pulmão/citologia , Células Vero
6.
ACS Appl Mater Interfaces ; 13(14): 16062-16074, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33797891

RESUMO

Gram-negative bacteria are covered by both an inner cytoplasmic membrane (IM) and an outer membrane (OM). Antimicrobial peptides (AMPs) must first permeate through the OM and cell wall before attacking the IM to cause cytoplasmic leakage and kill the bacteria. The bacterial OM is an asymmetric bilayer with the outer leaflet primarily composed of lipopolysaccharides (LPSs) and the inner leaflet composed of phospholipids (PLs). Two cationic α-helical AMPs were designed to target Gram-negative bacteria, a full peptide G(IIKK)3I-NH2 (G3), and a hydrophobic lipopeptide C8-G(IIKK)2I-NH2 (C8G2, with C8 denoting the octanoyl chain). LPS dominates OM functions as the first line of defense against antibiotics, thereby reducing drug susceptibility. This work explores how the two AMPs interact with LPS through several carefully chosen OM models that facilitated measurements from solid-state nuclear magnetic resonance (ss-NMR), small-angle neutron scattering (SANS), and neutron reflectivity (NR). The results revealed that G3 molecules bound preferably to the LPS head region and functioned as bridge molecules to reassemble the dislocated lipids into bilayer stacks. In contrast, C8G2 lipopeptides could quickly penetrate into the central region of the OM to cause direct removal of some membrane lipids. Different structural disruptions implicated different antimicrobial efficacies from these AMPs. The demonstration of the structural features underlying different susceptibilities of the OM to AMPs offers a useful route for the future development of strain-specific AMPs against antimicrobial-resistant pathogens.


Assuntos
Parede Celular/química , Bactérias Gram-Negativas/química , Proteínas Citotóxicas Formadoras de Poros/química , Desenho de Fármacos , Eritrócitos/efeitos dos fármacos , Bactérias Gram-Negativas/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Humanos , Bicamadas Lipídicas , Testes de Sensibilidade Microbiana , Proteínas Citotóxicas Formadoras de Poros/farmacologia , Conformação Proteica
7.
ACS Appl Mater Interfaces ; 12(50): 55675-55687, 2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33259204

RESUMO

Antimicrobial peptides are promising alternatives to traditional antibiotics. A group of self-assembling lipopeptides was formed by attaching an acyl chain to the N-terminus of α-helix-forming peptides with the sequence Cx-G(IIKK)yI-NH2 (CxGy, x = 4-12 and y = 2). CxGy self-assemble into nanofibers above their critical aggregation concentrations (CACs). With increasing x, the CACs decrease and the hydrophobic interactions increase, promoting secondary structure transitions within the nanofibers. Antimicrobial activity, determined by the minimum inhibition concentration (MIC), also decreases with increasing x, but the MICs are significantly smaller than the CACs, suggesting effective bacterial membrane-disrupting power. Unlike conventional antibiotics, both C8G2 and C12G2 can kill Staphylococcus aureus and Escherichia coli after only minutes of exposure under the concentrations studied. C12G2 nanofibers have considerably faster killing dynamics and lower cytotoxicity than their nonaggregated monomers. Antimicrobial activity of peptide aggregates has, to date, been underexploited, and it is found to be a very promising mechanism for peptide design. Detailed evidence for the molecular mechanisms involved is provided, based on superresolution fluorescence microscopy, solid-state nuclear magnetic resonance, atomic force microscopy, neutron scattering/reflectivity, circular dichroism, and Brewster angle microscopy.


Assuntos
Anti-Infecciosos/química , Lipopeptídeos/química , Sequência de Aminoácidos , Anti-Infecciosos/metabolismo , Anti-Infecciosos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/metabolismo , Peptídeos Catiônicos Antimicrobianos/farmacologia , Desenho de Fármacos , Escherichia coli/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Humanos , Lipopeptídeos/metabolismo , Lipopeptídeos/farmacologia , Lipossomos/química , Lipossomos/metabolismo , Testes de Sensibilidade Microbiana , Microscopia de Fluorescência , Nanofibras/química , Conformação Proteica em alfa-Hélice , Staphylococcus aureus/efeitos dos fármacos , Tensão Superficial
8.
ACS Appl Mater Interfaces ; 12(40): 44420-44432, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-32909733

RESUMO

Molecular dynamics (MD) simulations, stochastic optical reconstruction microscopy (STORM), and neutron reflection (NR) were combined to explore how antimicrobial peptides (AMPs) can be designed to promote the formation of nanoaggregates in bacterial membranes and impose effective bactericidal actions. Changes in the hydrophobicity of the designed AMPs were found to have a strong influence on their bactericidal potency and cytotoxicity. G(IIKK)3I-NH2 (G3) achieved low minimum inhibition concentrations (MICs) and effective dynamic kills against both antibiotic-resistant and -susceptible bacteria. However, a G3 derivative with weaker hydrophobicity, KI(KKII)2I-NH2 (KI), exhibited considerably lower membrane-lytic activity. In contrast, the more hydrophobic G(ILKK)3L-NH2 (GL) peptide achieved MICs similar to those observed for G3 but with worsened hemolysis. Both the model membranes studied by Brewster angle microscopy, zeta potential measurements, and NR and the real bacterial membranes examined with direct STORM contained membrane-inserted peptide aggregates upon AMP exposure. These structural features were well supported by MD simulations. By revealing how AMPs self-assemble in microbial membranes, this work provides important insights into AMP mechanistic actions and allows further fine-tuning of antimicrobial potency and cytotoxicity.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Materiais Biocompatíveis/farmacologia , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Tensoativos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Materiais Biocompatíveis/química , Testes de Sensibilidade Microbiana , Simulação de Dinâmica Molecular , Tamanho da Partícula , Agregados Proteicos , Propriedades de Superfície , Tensoativos/química
9.
J Mater Sci ; 55(24): 10284-10302, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32536720

RESUMO

Electrophilic aromatic substitution produces edge-specific modifications to CVD graphene and graphene nanoplatelets that are suitable for specific attachment of biomolecules.

10.
Elife ; 92020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32207687

RESUMO

Intracellular transport is predominantly heterogeneous in both time and space, exhibiting varying non-Brownian behavior. Characterization of this movement through averaging methods over an ensemble of trajectories or over the course of a single trajectory often fails to capture this heterogeneity. Here, we developed a deep learning feedforward neural network trained on fractional Brownian motion, providing a novel, accurate and efficient method for resolving heterogeneous behavior of intracellular transport in space and time. The neural network requires significantly fewer data points compared to established methods. This enables robust estimation of Hurst exponents for very short time series data, making possible direct, dynamic segmentation and analysis of experimental tracks of rapidly moving cellular structures such as endosomes and lysosomes. By using this analysis, fractional Brownian motion with a stochastic Hurst exponent was used to interpret, for the first time, anomalous intracellular dynamics, revealing unexpected differences in behavior between closely related endocytic organelles.


Assuntos
Fenômenos Bioquímicos/fisiologia , Transporte Biológico/fisiologia , Movimento/fisiologia , Redes Neurais de Computação , Vesículas Transportadoras/metabolismo , Humanos , Modelos Biológicos , Movimento (Física)
11.
Nat Commun ; 10(1): 4708, 2019 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-31624265

RESUMO

Self-assembling peptides have the ability to spontaneously aggregate into large ordered structures. The reversibility of the peptide hydrogen bonded supramolecular assembly make them tunable to a host of different applications, although it leaves them highly dynamic and prone to disassembly at the low concentration needed for biological applications. Here we demonstrate that a secondary hydrophobic interaction, near the peptide core, can stabilise the highly dynamic peptide bonds, without losing the vital solubility of the systems in aqueous conditions. This hierarchical self-assembly process can be used to stabilise a range of different ß-sheet hydrogen bonded architectures.


Assuntos
Substâncias Macromoleculares/química , Nanotubos de Peptídeos/química , Peptídeos/química , Conformação Proteica em Folha beta , Água/química , Sobrevivência Celular , Humanos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Células PC-3 , Solubilidade , Termodinâmica
12.
ACS Appl Mater Interfaces ; 11(38): 34609-34620, 2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31448889

RESUMO

Antimicrobial peptides (AMPs) can target bacterial membranes and kill bacteria through membrane structural damage and cytoplasmic leakage. A group of surfactant-like cationic AMPs was developed from substitutions to selective amino acids in the general formula of G(IIKK)3I-NH2, (called G3, a de novo AMP), to explore the correlation between AMP hydrophobicity and bioactivity. A threshold surface pressure over 12 mN/m was required to cause measurable antimicrobial activity and this corresponded to a critical AMP concentration. Greater surface activity exhibited stronger antimicrobial activity but had the drawback of worsening hemolytic activity. Small unilamellar vesicles (SUVs) with specific lipid compositions were used to model bacterial and host mammalian cell membranes by mimicking the main structural determinants of the charge and composition. Leakage from the SUVs of encapsulated carboxyfluorescein measured by fluorescence spectroscopy indicated a negative correlation between hydrophobicity and model membrane selectivity, consistent with measurements of the zeta potential that demonstrated the extent of AMP binding onto model SUV lipid bilayers. Experiments with model lipid membranes thus explained the trend of minimum inhibitory concentrations and selectivity measured from real cell systems and demonstrated the dominant influence of hydrophobicity. This work provides useful guidance for the improvement of the potency of AMPs via structural design, whilst taking due consideration of cytotoxicity.


Assuntos
Peptídeos Catiônicos Antimicrobianos , Bactérias/crescimento & desenvolvimento , Membrana Eritrocítica/metabolismo , Teste de Materiais , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Hemólise/efeitos dos fármacos , Humanos , Bicamadas Lipídicas/química
13.
Biomacromolecules ; 20(9): 3601-3610, 2019 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-31365246

RESUMO

Mixed thermoreversible gels were successfully fabricated by the addition of a thermosensitive polymer, poly(N-isopropylacrylamide) (PNIPAM), to fibrillar nanostructures self-assembled from a short peptide I3K. When the temperature was increased above the lower critical solution temperature of the PNIPAM, the molecules collapsed to form condensed globular particles, which acted as cross-links to connect different peptide nanofibrils and freeze their movements, resulting in the formation of a hydrogel. Since these processes were physically driven, such hydrogels could be reversibly switched between the sol and gel states as a function of temperature. As a model peptide, I3K was formulated with PNIPAM to produce a thermoreversible sol-gel system with a transition temperature of ∼33 °C, which is just below the body temperature. The antibacterial peptide of G(IIKK)3I-NH2 could be conveniently encapsulated in the hydrogel by the addition of the solution at lower temperatures in the sol phase and then increasing the temperature to be above 33 °C for gelation. The hydrogel gave a sustained and controlled linear release of G(IIKK)3I-NH2 over time. Using the peptide nanofibrils as three-dimensional scaffolds, such thermoresponsive hydrogels mimic the extracellular matrix and could potentially be used as injectable hydrogels for minimally invasive drug delivery or tissue engineering.


Assuntos
Resinas Acrílicas/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Sistemas de Liberação de Medicamentos , Hidrogéis/farmacologia , Resinas Acrílicas/química , Peptídeos Catiônicos Antimicrobianos/química , Humanos , Hidrogéis/química , Temperatura , Sensação Térmica , Engenharia Tecidual
14.
Biomacromolecules ; 20(4): 1719-1730, 2019 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-30865428

RESUMO

Peptide hydrogels are excellent candidates for medical therapeutics due to their tuneable viscoelastic properties, however, in vivo they will be subject to various osmotic pressures, temperature changes, and biological co-solutes, which could alter their performance. Peptide hydrogels formed from the synthetic peptide I3K have a temperature-induced hardening of their shear modulus by a factor of 2. We show that the addition of uncross-linked poly( N-isopropylacrylamide) chains to the peptide gels increases the gels' temperature sensitivity by 3 orders of magnitude through the control of osmotic swelling and cross-linking. Using machine learning combined with single-molecule fluorescence microscopy, we measured the modulation of states of prestress in the gels on the level of single peptide fibers. A new self-consistent mixture model was developed to simultaneously quantify the energy and the length distributions of the states of prestress. Switching the temperature from 20 to 40 °C causes 6-fold increases in the number of states of prestress. At the higher temperature, many of the fibers experience constrained buckling with characteristic small wavelength oscillations in their curvature.


Assuntos
Temperatura Alta , Hidrogéis/química , Peptídeos/química , Resistência ao Cisalhamento
15.
Langmuir ; 35(16): 5635-5646, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-30916568

RESUMO

The production of Escherichia coli K1 serotype capsule was investigated using direct stochastic optical reconstruction microscopy with live bacteria and graphene oxide-coated coverslips, overcoming many morphological artifacts found in other high-resolution imaging techniques. Super-resolution fluorescence images showed that the K1 capsular polysaccharide is not uniformly distributed on the cell surface, as previously thought. These studies demonstrated that on the cell surfaces the K1 capsule at the poles had bimodal thicknesses of 238 ± 41 and 323 ± 62 nm, whereas at the equator, there was a monomodal thickness of 217 ± 29 nm. This bimodal variation was also observed in high-pressure light-scattering chromatography measurements of purified K1 capsular polysaccharide. Particle tracking demonstrated that the formation of the capsule was dominated by the expansion of lyso-phosphatidylglycerol (lyso-PG) rafts that anchor the capsular polysaccharide in the outer membrane, and the expansion of these rafts across the cell surface was driven by new material transported through the capsular biosynthesis channels. The discovery of thicker capsules at the poles of the cell will have implications in mediating interactions between the bacterium and its immediate environment.


Assuntos
Antígenos de Bactérias/análise , Escherichia coli/metabolismo , Polissacarídeos Bacterianos/análise , Antígenos de Bactérias/biossíntese , Escherichia coli/citologia , Microscopia de Fluorescência , Estrutura Molecular , Tamanho da Partícula , Polissacarídeos Bacterianos/biossíntese , Propriedades de Superfície
16.
Nat Commun ; 9(1): 5118, 2018 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-30504813

RESUMO

Peptide self-assembly is a hierarchical process, often starting with the formation of α-helices, ß-sheets or ß-hairpins. However, how the secondary structures undergo further assembly to form higher-order architectures remains largely unexplored. The polar zipper originally proposed by Perutz is formed between neighboring ß-strands of poly-glutamine via their side-chain hydrogen bonding and helps to stabilize the sheet. By rational design of short amphiphilic peptides and their self-assembly, here we demonstrate the formation of polar zippers between neighboring ß-sheets rather than between ß-strands within a sheet, which in turn intermesh the ß-sheets into wide and flat ribbons. Such a super-secondary structural template based on well-defined hydrogen bonds could offer an agile route for the construction of distinctive nanostructures and nanomaterials beyond ß-sheets.


Assuntos
Peptídeos/química , Ligação de Hidrogênio , Nanoestruturas/química , Nanotubos de Carbono/química , Conformação Proteica em Folha beta , Estrutura Secundária de Proteína
17.
Sci Rep ; 8(1): 16928, 2018 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-30446745

RESUMO

Quenched Stochastic Optical Reconstruction Microscopy (qSTORM) was demonstrated with graphene oxide sheets, peptides and bacteria; a method of contrast enhancement with super-resolution fluorescence microscopy. Individual sheets of graphene oxide (GO) were imaged with a resolution of 16 nm using the quenching of fluorescence emission by GO via its large Resonant Energy Transfer (RET) efficiency. The method was then extended to image self-assembled peptide aggregates (resolution 19 nm) and live bacterial cells (resolution 55 nm, the capsular structure of E. coli from urinary tract infections) with extremely low backgrounds and high contrasts (between one and two orders of magnitude contrast factor improvements that depended on the thickness of the graphene oxide layer used). Graphene oxide films combined with STORM imaging thus provide an extremely convenient method to image samples with large backgrounds due to non-specifically bound fluorophores (either due to excess labelling or autofluorescent molecules), which is a common occurrence in studies of both biological cells and soft-condensed matter. The GO quenches the fluorescence across a thin layer at distances of less than 15 nm. Graphene oxide films coated with thin layers (≤15 nm) of polystyrene, polymethylmethacrylate and polylysine are shown to be effective in producing high contrast qSTORM images, providing a convenient modulation of sample/substrate interactions. The GO coatings can also provide an increased image resolution and a factor of 2.3 improvement was observed with the peptide fibres using a feature of interest metric,when there was a large non-specifically bound background.

18.
Langmuir ; 34(48): 14678-14689, 2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30407830

RESUMO

De novo peptide surfactant (I3K) gels provide an ideal system to study the complex dynamics of lightly cross-linked semiflexible fibers because of their large contour lengths, simple chemistry, and slow dynamics. We used single-molecule fluorescence microscopy to record individual fibers and Fourier decomposition of the fiber dynamics to separate thermal contributions to the persistence length from compressive states of prestress (SPS). Our results show that SPS in the network depend strongly on peptide concentration, buffer, and pH and that the fibril energies in SPS follow a Lévy distribution. The presence of SPS in the network imply that collective states of self-stress are also present. Therefore, semiflexible polymer gels need to be considered as complex load-bearing structures and the mean field models for polymer gel elasticity and dynamics often applied to them will not be fully representative of the behavior at the nanoscale. We quantify the impact of cross-links on reptation tube dynamics, which provides a second population of tube fluctuations in addition to those expected for uncross-linked entangled solutions.

19.
PLoS One ; 13(11): e0207436, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30475848

RESUMO

Intracellular transport of organelles is fundamental to cell function and health. The mounting evidence suggests that this transport is in fact anomalous. However, the reasons for the anomaly is still under debate. We examined experimental trajectories of organelles inside a living cell and propose a mathematical model that describes the previously reported transition from sub-diffusive to super-diffusive motion. In order to explain super-diffusive behaviour at long times, we introduce non-Markovian detachment kinetics of the cargo: the rate of detachment is inversely proportional to the time since the last attachment. Recently, we observed the non-Markovian detachment rate experimentally in eukaryotic cells. Here we further discuss different scenarios of how this effective non-Markovian detachment rate could arise. The non-Markovian model is successful in simultaneously describing the time averaged variance (the time averaged mean squared displacement corrected for directed motion), the mean first passage time of trajectories and the multiple peaks observed in the distributions of cargo velocities. We argue that non-Markovian kinetics could be biologically beneficial compared to the Markovian kinetics commonly used for modelling, by increasing the average distance the cargoes travel when a microtubule is blocked by other filaments. In turn, sub-diffusion allows cargoes to reach neighbouring filaments with higher probability, which promotes active motion along the microtubules.


Assuntos
Microtúbulos/fisiologia , Modelos Biológicos , Animais , Transporte Biológico Ativo/fisiologia , Humanos
20.
Langmuir ; 34(5): 1827-1833, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29303580

RESUMO

Chemical vapor deposition (CVD) is now a well-established method for creating monolayer graphene films. In this method, poly(methyl methacrylate) (PMMA) films are often coated onto monolayer graphene films to make them mechanically robust enough for transfer and further handling. However, it is found that PMMA is hard to remove entirely, and any residual polymers remaining can affect graphene's properties. We demonstrate here a method to determine the amount of PMMA remaining on the graphene sheet fabricated from CVD by a combined study of Raman scattering, atomic force microscopy, and neutron reflection. Neutron reflectivity is a powerful technique which is particularly sensitive to any interfacial structure, so it is able to investigate the density profile of the residual PMMA in the direction perpendicular to the graphene film surface. After the standard process of PMMA removal by acetone-IPA cleaning, we found that the remaining PMMA film could be represented as a two-layer model: an inner layer with a thickness of 17 Å and a roughness of 1 Å mixed with graphene and an outer diffuse layer with an average thickness of 31 Å and a roughness of 4 Å well mixed with water. On the basis of this model analysis, it was demonstrated that the remaining PMMA still occupied a significant fraction of the graphene film surface.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA