Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Food Res Int ; 164: 112318, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36737911

RESUMO

Filamentous fungi serve as potential candidates in the production of different value-added products. In the context of food, there are several advantages of using filamentous fungi for food. Among the main advantages is that the fungal biomass used food not only meets basic nutritional requirements but that it is also rich in protein, low in fat, and free of cholesterol. This speaks to the potential of filamentous fungi in the production of food that can substitute animal-derived protein sources such as meat. Moreover, life-cycle analyses and techno-economic analyses reveal that fungal proteins perform better than animal-derived proteins in terms of land use efficiency as well as global warming. The present article provides an overview of the potential of filamentous fungi as a source of food and food supplements. The commercialization potential as well as social, legal and safety issues of fungi-based food products are discussed.


Assuntos
Dieta Vegana , Fungos , Animais , Humanos , Suplementos Nutricionais , Proteínas Fúngicas/metabolismo , Fungos/metabolismo , Aquecimento Global
2.
Bioresour Technol ; 369: 128421, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36462761

RESUMO

By utilizing their powerful metabolic versatility, filamentous fungi can be utilized in bioprocesses aimed at achieving circular economy. With the current digital transformation within the biomanufacturing sector, the interest of automating fungi-based systems has intensified. The purpose of this paper was therefore to review the potentials connected to the use of automation and artificial intelligence in fungi-based systems. Automation is characterized by the substitution of manual tasks with mechanized tools. Artificial intelligence is, on the other hand, a domain within computer science that aims at designing tools and machines with the capacity to execute functions that would usually require human aptitude. Process flexibility, enhanced data reliability and increased productivity are some of the benefits of integrating automation and artificial intelligence in fungi-based bioprocesses. One of the existing gaps that requires further investigation is the use of such data-based technologies in the production of food from fungi.


Assuntos
Inteligência Artificial , Tecnologia , Humanos , Reprodutibilidade dos Testes , Automação , Fungos
3.
Bioengineered ; 13(3): 6521-6557, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35212604

RESUMO

In the past decades, considerable attention has been directed toward anaerobic digestion (AD), which is an effective biological process for converting diverse organic wastes into biogas, volatile fatty acids (VFAs), biohydrogen, etc. The microbial bioprocessing takes part during AD is of substantial significance, and one of the crucial approaches for the deep and adequate understanding and manipulating it toward different products is process microbiology. Due to highly complexity of AD microbiome, it is critically important to study the involved microorganisms in AD. In recent years, in addition to traditional methods, novel molecular techniques and meta-omics approaches have been developed which provide accurate details about microbial communities involved AD. Better understanding of process microbiomes could guide us in identifying and controlling various factors in both improving the AD process and diverting metabolic pathway toward production of selective bio-products. This review covers various platforms of AD process that results in different final products from microbiological point of view. The review also highlights distinctive interactions occurring among microbial communities. Furthermore, assessment of these communities existing in the anaerobic digesters is discussed to provide more insights into their structure, dynamics, and metabolic pathways. Moreover, the important factors affecting microbial communities in each platform of AD are highlighted. Finally, the review provides some recent applications of AD for the production of novel bio-products and deals with challenges and future perspectives of AD.


Assuntos
Anaerobiose/fisiologia , Biocombustíveis/microbiologia , Reatores Biológicos/microbiologia , Ácidos Graxos Voláteis/metabolismo , Hidrogênio/metabolismo , Microbiota
4.
Foods ; 10(11)2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34829052

RESUMO

New food sources are explored to provide food security in sustainable ways. The submerged fermentation of edible filamentous fungi is a promising strategy to provide nutritious and affordable food that is expected to have a low environmental impact. The aim of the current study was to assess the novel use of Aspergillus oryzae cultivated in submerged fermentation on oat flour as a source for food products that do not undergo secondary fermentation or significant downstream processing. The fungus was cultivated in a pilot-scale airlift bioreactor, and the biomass concentration and protein content of the biomass were assessed. A tasting with an untrained panel assessed consumer preferences regarding the taste and texture of minimally processed vegetarian and vegan burger patties made from the biomass, and how the patties fared against established meat-alternative-based patties. The cultivation of Aspergillus oryzae resulted in a yield of 6 g/L dry biomass with a protein content of 37% on a dry weight basis. The taste and texture of the minimally processed fungal burger patties were to the liking of some participants. This was also reflected in diverse feedback provided by the participants. The cultivation of the fungus on oat flour and its utilization in developing burger patties shows its promising potential for the production of nutritious food. The applications of the fungus can be further developed by exploring other favorable ways to texture and season this relatively new functional food source to the preferences of consumers.

5.
Bioresour Technol ; 342: 125920, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34534942

RESUMO

This work was aimed to evaluate the distinctive food waste (FW) organic loading rates (OLR) on methanogen and nitrifying genes dynamics and its correlation with identified relative abundance of bacterial dynamics during the anaerobic digestion. This experiment were carried out in the digesters at high OLR of food wastes at (4 to 8 g volatile solids/liter/day reactor R1) and (6 to 10 g volatile solids/liter/day reactor R2). The results shown that the relative abundance of mcrA, mcrB and mcrG genes were richest in the first day of both R1 and R2. In addition, the most of nitrifying genes were greater in after 34 days digestion in R2, while these genes did not show the specific regularity in R1. Finally, the correlation figure shows that Clostridium and Lactobacillus genera were significantly correlated with the different organic acids and methanogen and nitrifying genes dynamics.


Assuntos
Alimentos , Eliminação de Resíduos , Anaerobiose , Reatores Biológicos , Digestão , Metano
6.
Bioresour Technol ; 337: 125410, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34157433

RESUMO

In a circular economy approach, edible filamentous fungi (single cell protein) can be cultivated on volatile fatty acids (VFAs) derived from anaerobic digestion (AD) of organic-rich waste streams. In this study, the effect of pH, concentration/distribution of VFAs, nutrient supplementation, and type of waste on Aspergillus oryzae cultivation on synthetic VFAs, and actual VFAs derived from AD of food waste and cow manure were investigated. The optimal pH for A. oryzae growth on VFAs were 6 and 7 with maximum acetic acid consumption rates of 0.09 g/L.h. The fungus could thrive on high concentrations of acetic (up to 9 g/L) yielding 0.29 g dry biomass/gVFAsfed. In mixed VFAs cultures, A. oryzae primarily consumed caproic and acetic acids reaching a biomass yield of 0.26 g dry biomass/gVFAsfed (containing up to 41% protein). For waste-derived VFAs at pH 6, the fungus successfully consumed 81-100% of caproic, acetic, and butyric acids.


Assuntos
Aspergillus oryzae , Eliminação de Resíduos , Anaerobiose , Animais , Reatores Biológicos , Bovinos , Ácidos Graxos Voláteis , Feminino , Fermentação , Alimentos , Concentração de Íons de Hidrogênio , Esterco
7.
Bioengineered ; 12(1): 2480-2498, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34115556

RESUMO

High production costs still hamper fast expansion of commercial production of polyhydroxyalkanoates (PHAs). This problem is greatly related to the cultivation medium which accounts for up to 50% of the whole process costs. The aim of this research work was to evaluate the potential of using volatile fatty acids (VFAs), derived from acidogenic fermentation of food waste, as inexpensive carbon sources for the production of PHAs through bacterial cultivation. Bacillus megaterium could assimilate glucose, acetic acid, butyric acid, and caproic acid as single carbon sources in synthetic medium with maximum PHAs production yields of 9-11%, on a cell dry weight basis. Single carbon sources were then replaced by a mixture of synthetic VFAs and by a VFAs-rich stream from the acidogenic fermentation of food waste. After 72 h of cultivation, the VFAs were almost fully consumed by the bacterium in both media and PHAs production yields of 9-10%, on cell dry weight basis, were obtained. The usage of VFAs mixture was found to be beneficial for the bacterial growth that tackled the inhibition of propionic acid, iso-butyric acid, and valeric acid when these volatile fatty acids were used as single carbon sources. The extracted PHAs were revealed to be polyhydroxybutyrate (PHB) by characterization methods of Fourier-transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC). The obtained results proved the possibility of using VFAs from acidogenic fermentation of food waste as a cheap substrate to reduce the cost of PHAs production.


Assuntos
Ácidos/metabolismo , Bacillus megaterium/metabolismo , Ácidos Graxos Voláteis/metabolismo , Fermentação , Alimentos , Poli-Hidroxialcanoatos/biossíntese , Eliminação de Resíduos , Bacillus megaterium/efeitos dos fármacos , Bacillus megaterium/crescimento & desenvolvimento , Biomassa , Varredura Diferencial de Calorimetria , Fermentação/efeitos dos fármacos , Glucose/farmacologia , Concentração de Íons de Hidrogênio , Espectroscopia de Infravermelho com Transformada de Fourier
8.
Bioresour Technol ; 335: 125296, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34022478

RESUMO

In this study, the influence of distinct hydraulic retention times (HRT) and organic loading rates (OLRs) on fungal dynamics during food waste anaerobic digestion in immersed membrane-based bio-reactors (iMBR) were investigated. The organic loading rate 4-8 g VS/L/d (R1) and 6-10 g VS/L/d (R2) were set in two iMBR. T1 (1d), T2 (15d) and T3 (34d) samples collected from each bioreactor were analyzed fungal community by using 18s rDNA. In R2, T2 had the most abundant Ascomycota, Basidiomycota, Chytridiomycota and Mucoromycota. As for R1, T3 also had the richest Cryptomycota except above four kinds of fungi. Subsequently, the Principal Component Analysis (PCA) and Non-Metric Multi-Dimensional Scaling (NMDS) indicated that fungal diversity was varied among the all three phases (T1, T2, and T3) and each treatment (R1 and R2). Finally, the results showed that different OLRs and HRT have significantly influenced the fungal community.


Assuntos
Eliminação de Resíduos , Esgotos , Anaerobiose , Reatores Biológicos , Alimentos , Fungos , Metano
9.
Bioresour Technol ; 330: 124992, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33744736

RESUMO

Although the high nitrogen content of chicken manure (CM) poses major challenges for methane production through anaerobic digestion, on the bright side, it has a great potential for production of value-added intermediate products, such as volatile fatty acids (VFAs). However, in order to enhance VFAs yield, methane formation should be substantially suppressed. In the current research, individual and multiple effects of initial pH, heat-shock pretreatment, chemical methanogens inhibitor and the inoculum to substrate ratio (ISR) on optimization VFAs fermentation from CM were evaluated via batch assays. In this regard, the highest net VFAs yield, 0.53 g-VFA/g-VS, was achieved at conditions with heat-shocked inoculum and CM at ISR 1:6 and pH uncontrolled. Acetate dominated the VFAs mixture, accounting for up to 75% of total. Increased inoculum content enhanced the bioconversion efficiency to 78% at ISR 1:3. The study results suggest that alkalinity is a key promoter of VFAs production from CM.


Assuntos
Galinhas , Esterco , Anaerobiose , Animais , Reatores Biológicos , Ácidos Graxos Voláteis , Fermentação , Metano
10.
Bioresour Technol ; 321: 124456, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33276207

RESUMO

Cow manure (CM) generation in large volumes has for long been considered a waste management challenge. However, the organic content of CM signals opportunities for the production of value-added bioproducts such as volatile fatty acids (VFAs) through anaerobic digestion (AD). However, a robust VFAs fermentation process requires effective methane formation inhibition and enhance VFAs recovery. In this study, thermal pretreatment was applied to inhibit methanogens for enhanced VFAs production and an immersed membrane bioreactor (iMBR) for in situ recovery of VFAs in a semi-continuous AD. Maximal VFAs yield of 0.41 g VFAs/g volatile solids (VS) was obtained from thermally-treated CM without inoculum addition. The CM was further fed to the iMBR operating at organic loading rates of 0.8-4.7 gVS/L.d. The VFAs concentration increased to 6.93 g/L by rising substrate loading to 4.7 g VS/L.d. The applied iMBR set-up was successfully used for stable long-term (114 days) VFAs production and recovery.


Assuntos
Reatores Biológicos , Esterco , Anaerobiose , Animais , Bovinos , Ácidos Graxos Voláteis , Feminino , Fermentação , Metano
11.
Bioresour Technol ; 310: 123444, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32361197

RESUMO

Rhizopus oligosporus is an edible filamentous fungus that can contribute to meet the growing demand for single-cell protein. Volatile fatty acids (VFAs) are favorable potential substrates for producing R. oligosporus biomass due to their capacity to be synthesized from a wide range of low-value organic solid wastes via anaerobic digestion. The goal of this work was to cultivate R. oligosporus using food waste-derived VFAs as the sole carbon source. To maintain the requisite low substrate concentrations, the fed-batch cultivation technique was applied. This resulted in a four-fold improvement in biomass production relative to standard batch cultivation. Maximum biomass yield of 0.21 ± 0.01 g dry biomass/g VFAs COD eq. consumed, containing 39.28 ± 1.54% crude protein, was obtained. In the bubble-column bioreactors, the complete uptake of acetic acid was observed, while the consumptions of caproic and butyric acids reached up to 97.64% and 26.13%, respectively.


Assuntos
Eliminação de Resíduos , Rhizopus , Anaerobiose , Biomassa , Reatores Biológicos , Ácidos Graxos Voláteis , Alimentos
12.
Bioengineered ; 11(1): 356-374, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32149573

RESUMO

The study of metagenomics is an emerging field that identifies the total genetic materials in an organism along with the set of all genetic materials like deoxyribonucleic acid and ribose nucleic acid, which play a key role with the maintenance of cellular functions. The best part of this technology is that it gives more flexibility to environmental microbiologists to instantly pioneer the immense genetic variability of microbial communities. However, it is intensively complex to identify the suitable sequencing measures of any specific gene that can exclusively indicate the involvement of microbial metagenomes and be able to advance valuable results about these communities. This review provides an overview of the metagenomic advancement that has been advantageous for aggregation of more knowledge about specific genes, microbial communities and its metabolic pathways. More specific drawbacks of metagenomes technology mainly depend on sequence-based analysis. Therefore, this 'targeted based metagenomics' approach will give comprehensive knowledge about the ecological, evolutionary and functional sequence of significantly important genes that naturally exist in living beings either human, animal and microorganisms from distinctive ecosystems.


Assuntos
Metagenômica/métodos , DNA/química , Humanos , Ácidos Nucleicos/química
13.
Bioresour Technol ; 301: 122778, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31983580

RESUMO

With the inevitable rise in human population, resource recovery from waste stream is becoming important for a sustainable economy, conservation of the ecosystem as well as for reducing the dependence on the finite natural resources. In this regard, a bio-based circular economy considers organic wastes and residues as potential resources that can be utilized to supply chemicals, nutrients, and fuels needed by mankind. This review explored the role of aerobic and anaerobic digestion technologies for the advancement of a bio-based circular society. The developed routes within the anaerobic digestion domain, such as the production of biogas and other high-value chemicals (volatile fatty acids) were discussed. The potential to recover important nutrients, such as nitrogen through composting, was also addressed. An emphasis was made on the innovative models for improved economics and process performance, which include co-digestion of various organic solid wastes, recovery of multiple bio-products, and integrated bioprocesses.


Assuntos
Compostagem , Resíduos Sólidos , Anaerobiose , Biocombustíveis , Reatores Biológicos , Ecossistema
14.
Bioengineered ; 10(1): 437-458, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31570035

RESUMO

Anaerobic digestion (AD) is a well-established technology used for producing biogas or biomethane alongside the slurry used as biofertilizer. However, using a variety of wastes and residuals as substrate and mixed cultures in the bioreactor makes AD as one of the most complicated biochemical processes employing hydrolytic, acidogenic, hydrogen-producing, acetate-forming bacteria as well as acetoclastic and hydrogenoclastic methanogens. Hydrogen and volatile fatty acids (VFAs) including acetic, propionic, isobutyric, butyric, isovaleric, valeric and caproic acid and other carboxylic acids such as succinic and lactic acids are formed as intermediate products. As these acids are important precursors for various industries as mixed or purified chemicals, the AD process can be bioengineered to produce VFAs alongside hydrogen and therefore biogas plants can become biorefineries. The current review paper provides the theory and means to produce and accumulate VFAs and hydrogen, inhibit their conversion to methane and to extract them as the final products. The effects of pretreatment, pH, temperature, hydraulic retention time (HRT), organic loading rate (OLR), chemical methane inhibitions, and heat shocking of the inoculum on VFAs accumulation, hydrogen production, VFAs composition, and the microbial community were discussed. Furthermore, this paper highlights the possible techniques for recovery of VFAs from the fermentation media in order to minimize product inhibition as well as to supply the carboxylates for downstream procedures.


Assuntos
Bactérias/metabolismo , Bioengenharia , Ácidos Graxos Voláteis/metabolismo , Hidrogênio/metabolismo , Metano/metabolismo , Anaerobiose , Bactérias/genética , Reatores Biológicos/microbiologia , Resíduos/análise
15.
Bioresour Technol ; 274: 329-334, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30529480

RESUMO

Volatile fatty acids (VFAs) are the key intermediates from anaerobic digestion (AD) process that can be a platform to synthesize products of higher value than biogas. However, some obstacles still exist that prevent large-scale production and application of VFAs, key among them being the difficulty in recovering the acids from the fermentation medium and low product yields. In this study, a novel anaerobic immersed membrane bioreactor (iMBR) with robust cleaning capabilities, which incorporated frequent backwashing to withstand the complex AD medium, was designed and applied for production and in situ recovery of VFAs. The iMBR was fed with food waste and operated without pH control, achieving a high yield of 0.54 g VFA/g VSadded. The continuous VFA recovery process in the iMBR was investigated for 40 days at OLRs of 2 gVS/L/d and 4 gVS/L/d without significant change in the permeate flux at a maximum suspended solids concentration of 31 g/L.


Assuntos
Reatores Biológicos , Ácidos Graxos Voláteis/biossíntese , Alimentos , Fermentação
16.
Bioresour Technol ; 248(Pt A): 113-121, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28651875

RESUMO

An effective method for the production of value-added chemicals from food waste and lignocellulosic materials is a hybrid thermal-biological process, which involves gasification of the solid materials to syngas (primarily CO and H2) followed by fermentation. This paper reviews the recent advances in this process. The special focus is on the cultivation methods that involve the use of single strains, defined mixed cultures and undefined mixed cultures for production of carboxylic acids and higher alcohols. A rate limiting step in these processes is the low mass transfer between the gas and the liquid phases. Therefore, novel techniques that can enhance the gas-liquid mass transfer including membrane- and trickle-bed bioreactors were discussed. Such bioreactors have shown promising results in increasing the volumetric mass transfer coefficient (kLa). High gas pressure also influences the mass transfer in certain batch processes, although the presence of impurities in the gas would impede the process.


Assuntos
Reatores Biológicos , Fermentação , Álcoois , Biomassa , Alimentos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA