Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mater Today Bio ; 20: 100627, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37122838

RESUMO

During the last few decades, thermoresponsive materials for modulating cell adhesion have been investigated for the application of tissue engineering. In this study, we developed thermoresponsive mixed polymer brushes consisting of poly(N-isopropylacrylamide) (PNIPAAm) and poly(N,N-dimethylaminopropylacrylamide) (PDMAPAAm). The mixed polymer brushes were prepared on a glass substrate via the reversible addition-fragmentation chain transfer polymerization of DMAPAAm and subsequent atom transfer radical polymerization of NIPAAm. The mixed polymer brushes grafted to glass exhibited increased cationic properties by increasing the grafted PDMAPAAm length. The shrinking and extension of PNIPAAm exposed and concealed PDMAPAAm, respectively, indicating that the surface cationic properties can be controlled by changing the temperature. At 37 â€‹°C, the prepared mixed polymer brushes enhanced cell adhesion through their electrostatic interactions with cells. They also exhibited various thermoresponsive adhesion and detachment properties using various types of cells, such as mesenchymal stem cells. Temperature-controlled cell adhesion and detachment behavior differed between cell types. Using the prepared mixed polymer brush, we separated MSCs from adipocytes and HeLa cells by simply changing the temperature. Thus, the thermoresponsive mixed polymer brushes may be used to separate mesenchymal stem cells from their differentiated or contaminant cells by altering the temperature.

2.
Small Methods ; 7(2): e2200849, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36562139

RESUMO

In preclinical drug testing, human muscle tissue models are critical to understanding the complex physiology, including drug effects in the human body. This study reports that a multilayering approach to cell sheet-based engineering produces an engineered human muscle tissue with sufficient contractile force suitable for measurement. A thermoresponsive micropatterned substrate regulates the biomimetic alignment of myofiber structures enabling the harvest of the aligned myofibers as a single cell sheet. The functional muscle tissue is produced by layering multiple myofiber sheets on a fibrin-based gel. This gel environment promotes myofiber maturation, provides the tissue an elastic platform for contraction, and allows the attachment of a measurement device. Since this multilayering approach is effective in enhancing the contractile ability of the muscle tissue, this muscle tissue generates a significantly high contractile force that can be measured quantitatively. The multilayered muscle tissue shows unidirectional contraction from electrical and chemical stimulation. In addition, their physiological responses to representative drugs can be determined quantitatively in real time by changes in contractile force and fatigue resistance. These physiological properties indicate that the engineered muscle tissue can become a promising tissue model for preclinical in vitro studies in muscle physiology and drug discovery.


Assuntos
Contração Muscular , Engenharia Tecidual , Humanos , Contração Muscular/fisiologia , Fibras Musculares Esqueléticas , Músculo Esquelético/fisiologia , Descoberta de Drogas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA