Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Science ; 382(6672): 792-796, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37972183

RESUMO

Upon cooling, condensed-matter systems typically transition into states of lower symmetry. The converse-i.e., the emergence of higher symmetry at lower temperatures-is extremely rare. In this work, we show how an unusually isotropic magnetoresistance in the highly anisotropic, one-dimensional conductor Li0.9Mo6O17 and its temperature dependence can be interpreted as a renormalization group (RG) flow toward a so-called separatrix. This approach is equivalent to an emergent symmetry in the system. The existence of two distinct ground states, Mott insulator and superconductor, can then be traced back to two opposing RG trajectories. By establishing a direct link between quantum field theory and an experimentally measurable quantity, we uncover a path through which emergent symmetry might be identified in other candidate materials.

2.
Artigo em Inglês | MEDLINE | ID: mdl-31160861

RESUMO

Time-division multiplexing (TDM) is the backup readout technology for the X-ray Integral Field Unit (X-IFU), a 3,168-pixel X-ray transition-edge sensor (TES) array that will provide imaging spectroscopy for ESA's Athena satellite mission. X-0IFU design studies are considering readout with a multiplexing factor of up to 40. We present data showing 40-row TDM readout (32 TES rows + 8 repeats of the last row) of TESs that are of the same type as those being planned for X-IFU, using measurement and analysis parameters within the ranges specified for X-IFU. Singlecolumn TDM measurements have best-fit energy resolution of (1.91 ± 0.01) eV for the Al Kα complex (1.5 keV), (2.10 ± 0.02) eV for Ti Kα (4.5 keV), (2.23 ± 0.02) eV for Mn Kα (5.9 keV), (2.40 ± 0.02) eV for Co Kα (6.9 keV), and (3.44 ± 0.04) eV for Br Kα (11.9 keV). Three-column measurements have best-fit resolution of (2.03 ± 0.01) eV for Ti Kα and (2.40 ± 0.01) eV for Co Kα. The degradation due to the multiplexed readout ranges from 0.1 eV at the lower end of the energy range to 0.5 eV at the higher end. The demonstrated performance meets X-IFU's energy-resolution and energy-range requirements. True 40-row TDM readout, without repeated rows, of kilopixel scale arrays of X-IFU-like TESs is now under development.

3.
Artigo em Inglês | MEDLINE | ID: mdl-31186605

RESUMO

With the improving energy resolution of transitionedge sensor (TES) based microcalorimeters, performance verification and calibration of these detectors has become increasingly challenging, especially in the energy range below 1 keV where fluorescent atomic X-ray lines have linewidths that are wider than the detector energy resolution and require impractically high statistics to determine the gain and deconvolve the instrumental profile. Better behaved calibration sources such as grating monochromators are too cumbersome for space missions and are difficult to use in the lab. As an alternative, we are exploring the use of pulses of 3 eV optical photons delivered by an optical fiber to generate combs of known energies with known arrival times. Here, we discuss initial results of this technique obtained with 2 eV and 0.7 eV resolution X-ray microcalorimeters. With the 2 eV detector, we have achieved photon number resolution for pulses with mean photon number up to 133 (corresponding to 0.4 keV).

4.
J Low Temp Phys ; 193(3-4): 321-327, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31186584

RESUMO

We have specialized astronomical applications for X-ray microcalorimeters with superconducting transition edge sensors (TESs) that require exceptionally good TES performance, but which operate in the small-signal regime. We have therefore begun a program to carefully characterize the entire transition surface of TESs with and without the usual zebra stripes to see if there are reproducible local "sweet spots" where the performance is much better than average. These measurements require precise knowledge of the circuit parameters. Here, we show how the Shapiro effect can be used to precisely calibrate the value of the shunt-resistor. We are also investigating the effects of stress and external magnetic fields to better understand reproducibility problems.

5.
Artigo em Inglês | MEDLINE | ID: mdl-28804229

RESUMO

We are developing superconducting transition-edge sensor (TES) microcalorimeter focal planes for versatility in meeting specifications of X-ray imaging spectrometers including high count-rate, high energy resolution, and large field-of-view. In particular, a focal plane composed of two sub-arrays: one of fine-pitch, high count-rate devices and the other of slower, larger pixels with similar energy resolution, offers promise for the next generation of astrophysics instruments, such as the X-ray Integral Field Unit (X-IFU) instrument on the European Space Agency's Athena mission. We have based the sub-arrays of our current design on successful pixel designs that have been demonstrated separately. Pixels with an all gold X-ray absorber on 50 and 75 micron scales where the Mo/Au TES sits atop a thick metal heatsinking layer have shown high resolution and can accommodate high count-rates. The demonstrated larger pixels use a silicon nitride membrane for thermal isolation, thinner Au and an added bismuth layer in a 250 micron square absorber. To tune the parameters of each sub-array requires merging the fabrication processes of the two detector types. We present the fabrication process for dual production of different X-ray absorbers on the same substrate, thick Au on the small pixels and thinner Au with a Bi capping layer on the larger pixels to tune their heat capacities. The process requires multiple electroplating and etching steps, but the absorbers are defined in a single ion milling step. We demonstrate methods for integrating heatsinking of the two types of pixel into the same focal plane consistent with the requirements for each sub-array, including the limiting of thermal crosstalk. We also discuss fabrication process modifications for tuning the intrinsic transition temperature (Tc) of the bilayers for the different device types through variation of the bilayer thicknesses. The latest results on these "hybrid" arrays will be presented.

6.
Proc Natl Acad Sci U S A ; 114(21): 5384-5388, 2017 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-28487488

RESUMO

Applied pressure drives the heavy-fermion antiferromagnet CeRhIn5 toward a quantum critical point that becomes hidden by a dome of unconventional superconductivity. Magnetic fields suppress this superconducting dome, unveiling the quantum phase transition of local character. Here, we show that [Formula: see text] magnetic substitution at the Ce site in CeRhIn5, either by Nd or Gd, induces a zero-field magnetic instability inside the superconducting state. This magnetic state not only should have a different ordering vector than the high-field local-moment magnetic state, but it also competes with the latter, suggesting that a spin-density-wave phase is stabilized in zero field by Nd and Gd impurities, similarly to the case of Ce0.95Nd0.05CoIn5 Supported by model calculations, we attribute this spin-density wave instability to a magnetic-impurity-driven condensation of the spin excitons that form inside the unconventional superconducting state.

7.
Sci Rep ; 6: 27294, 2016 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-27271852

RESUMO

The change in resistance of a material in a magnetic field reflects its electronic state. In metals with weakly- or non-interacting electrons, the resistance typically increases upon the application of a magnetic field. In contrast, negative magnetoresistance may appear under some circumstances, e.g., in metals with anisotropic Fermi surfaces or with spin-disorder scattering and semimetals with Dirac or Weyl electronic structures. Here we show that the non-magnetic semimetal TaAs2 possesses a very large negative magnetoresistance, with an unknown scattering mechanism. Density functional calculations find that TaAs2 is a new topological semimetal [ℤ2 invariant (0;111)] without Dirac dispersion, demonstrating that a negative magnetoresistance in non-magnetic semimetals cannot be attributed uniquely to the Adler-Bell-Jackiw chiral anomaly of bulk Dirac/Weyl fermions.

8.
Proc Natl Acad Sci U S A ; 112(44): 13520-4, 2015 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-26483465

RESUMO

The easily tuned balance among competing interactions in Kondo-lattice metals allows access to a zero-temperature, continuous transition between magnetically ordered and disordered phases, a quantum-critical point (QCP). Indeed, these highly correlated electron materials are prototypes for discovering and exploring quantum-critical states. Theoretical models proposed to account for the strange thermodynamic and electrical transport properties that emerge around the QCP of a Kondo lattice assume the presence of an indefinitely large number of itinerant charge carriers. Here, we report a systematic transport and thermodynamic investigation of the Kondo-lattice system CeNi2-δAs2 (δ ≈ 0.28) as its antiferromagnetic order is tuned by pressure and magnetic field to zero-temperature boundaries. These experiments show that the very small but finite carrier density of ~0.032 E-/formular unit in CeNi2-δAs2 leads to unexpected transport signatures of quantum criticality and the delayed development of a fully coherent Kondo-lattice state with decreasing temperature. The small carrier density and associated semimetallicity of this Kondo-lattice material favor an unconventional, local-moment type of quantum criticality and raises the specter of the Nozières exhaustion idea that an insufficient number of conduction-electron spins to separately screen local moments requires collective Kondo screening.

9.
J Phys Condens Matter ; 27(36): 365702, 2015 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-26302330

RESUMO

We report thermal and transport properties of U2Pt x Ir1-x C2 from which a magnetic phase diagram is obtained. Pure U2IrC2 is an antiferromagnet at 6.5 K, whose Néel temperature initially rises to 13.2 K at x = 0.2 and subsequently is suppressed to zero temperature with increasing Pt content near x = 0.6. Heat capacity divided by temperature at x = 0.6 shows an upturn at low temperature, consistent with the expectations of enhanced quantum fluctuations in the presence of an underlying quantum critical point. The entropy after the phonon contribution has been subtracted has a value of 0.24 Rln2 at the Néel temperature of U2IrC2, revealing an itinerant nature of the 5 f electrons in this compound. On the Pt rich side of the phase diagram, superconductivity is suppressed by x = 0.85. The residual resistivity increases by a factor of 10 from pure Pt (x = 1) to x = 0.85 where superconductivity is suppressed to zero. By comparing the phase diagram of Ir doped U2PtC2 with the phase diagram of pressure tuned and Rh doped U2PtC2 we demonstrate the role of electronic tuning in this system.

10.
Sci Rep ; 3: 3261, 2013 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-24253025

RESUMO

The nature of the electronic state of a metal depends strongly on its dimensionality. In a system of isolated conducting chains, the Fermi-liquid (quasiparticle) description appropriate for higher dimensions is replaced by the so-called Tomonaga-Luttinger liquid picture characterized by collective excitations of spin and charge. Temperature is often regarded as a viable tuning parameter between states of different dimensionality, but what happens once thermal broadening becomes comparable to the interchain hopping energy remains an unresolved issue, one that is central to many organic and inorganic conductors. Here we use the ratio of the thermal to electrical conductivities to probe the nature of the electronic state in PrBa2Cu4O8 as a function of temperature. We find that despite the interchain transport becoming non-metallic, the charge carriers within the CuO chains appear to retain their quasiparticle nature. This implies that temperature alone cannot induce a crossover from Fermi-liquid to Tomonaga-Luttinger-liquid behaviour in quasi-one-dimensional metals.

11.
Phys Rev Lett ; 108(18): 187003, 2012 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-22681108

RESUMO

The upper critical field H(c2) of purple bronze Li0:9Mo6O17 is found to exhibit a large anisotropy, in quantitative agreement with that expected from the observed electrical resistivity anisotropy. With the field aligned along the most conducting axis, H(c2) increases monotonically with decreasing temperature to a value 5 times larger than the estimated paramagnetic pair-breaking field. Theories for the enhancement of H(c2) invoking spin-orbit scattering or strong-coupling superconductivity are shown to be inadequate in explaining the observed behavior, suggesting that the pairing state in Li0:9Mo6O17 is unconventional and possibly spin triplet.

12.
Br J Radiol ; 81(965): e149-53, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18440938

RESUMO

Breast metastases from non-breast primaries are rare in female patients and exceedingly rare in male patients, with only a handful of cases described. Lymphoma, metastatic melanoma and bronchial carcinoma are the primary sites for the majority of breast metastases. Breast metastases from colorectal carcinoma have been described previously in only a small number of cases in the literature. Here, we report a further two patients with biopsy-proven colorectal carcinoma metastases to both breasts, who demonstrate contrasting unusual and atypical imaging features that have not been reported previously. In one case, the imaging appearances mimic a multifocal primary breast carcinoma. Metastatic disease in the breast is a marker for disseminated metastatic spread, with a correspondingly poor prognosis. Therefore, we review the imaging features that differentiate metastatic breast disease from multifocal breast primaries, which are important to recognize because the management options for these patients differ greatly.


Assuntos
Neoplasias da Mama/secundário , Neoplasias Colorretais , Idoso , Neoplasias da Mama/diagnóstico por imagem , Feminino , Humanos , Mamografia/métodos , Pessoa de Meia-Idade , Ultrassonografia Mamária/métodos
14.
Protein Eng ; 15(9): 753-61, 2002 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12456874

RESUMO

Streptokinase (SK) is a thrombolytic agent widely used for the clinical treatment of clotting disorders such as heart attack. The treatment is based on the ability of SK to bind plasminogen (Pg) or plasmin (Pm), forming complexes that proteolytically activate other Pg molecules to Pm, which carries out fibrinolysis. SK contains three major domains. The N-terminal domain, SKalpha, provides the complex with substrate recognition towards Pg. SKalpha contains a unique mobile loop, residues 45-70, absent in the corresponding domains of other bacterial Pg activators. To study the roles of this loop, we deleted 12 residues in this loop in both full-length SK and the SKalpha fragment. Kinetic data indicate that this loop participates in the recognition of substrate Pg, but does not function in the active site formation in the activator complex. Two crystal structures of the deletion mutant of SKalpha (SKalpha(delta)) complexed with the protease domain of Pg were determined. While the structure of SKalpha(delta) is essentially the same as this domain in full-length SK, the mode of SK-Pg interaction was however different from a previously observed structure. Even though mutagenesis studies indicated that the current complex represents a minor interacting form in solution, the binding to SKalpha(delta) triggered similar conformational changes in the Pg active site in both crystal forms.


Assuntos
Plasminogênio/metabolismo , Estreptoquinase/química , Estreptoquinase/metabolismo , Sequência de Bases , Sítios de Ligação , Cristalografia por Raios X , DNA/genética , Humanos , Técnicas In Vitro , Cinética , Substâncias Macromoleculares , Modelos Moleculares , Plasminogênio/química , Engenharia de Proteínas , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Deleção de Sequência , Estreptoquinase/genética
15.
Blood Coagul Fibrinolysis ; 4(1): 159-64, 1993 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-8457646

RESUMO

Automated assays for the measurement of cross-linked fibrin derivatives in plasma (XL-FbDP) have been developed utilizing latex beads coated with anti-D dimer monoclonal antibody (DD-3B6/22) for both the Cobas Fara Chemistry Centrifugal and the Cobas Mira analysers (Roche, Basle, Switzerland). The analysers were programmed to mix plasma and latex reagent simultaneously and analyse absorbance changes over a 10-15 min period. Results were interpolated by the analyser from a standard curve derived from a polymer of D-dimer. Both assays had high precision (< 5% CV) for values between 100 and 1000 ng/ml and provided clear discrimination between normal samples and samples from patients suffering from the thrombotic diseases, DVT/PE and DIC. The results obtained for XL-FbDP determination with both methods compared well with established methods: a high correlation was obtained with a semi-quantitative manual latex method for both the Fara (r = 0.92) and Mira (r = 0.83) and correlations (r) of 0.81 (Fara) and 0.84 (Mira) were obtained with an enzyme immunoassay (EIA). Correlation between the two automated procedures was high (r = 0.96). The automated method will enable laboratories to provide a rapid and accurate quantitation of XL-FbDP.


Assuntos
Produtos de Degradação da Fibrina e do Fibrinogênio/análise , Anticorpos Monoclonais , Automação , Análise Química do Sangue/instrumentação , Análise Química do Sangue/métodos , Humanos , Látex , Microesferas , Robótica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA