Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(32): e202304325, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37285191

RESUMO

Heparan sulfate (HS) contains variably repeating disaccharide units organized into high- and low-sulfated domains. This rich structural diversity enables HS to interact with many proteins and regulate key signaling pathways. Efforts to understand structure-function relationships and harness the therapeutic potential of HS are hindered by the inability to synthesize an extensive library of well-defined HS structures. We herein report a rational and expedient approach to access a library of 27 oligosaccharides from natural aminoglycosides as HS mimetics in 7-12 steps. This strategy significantly reduces the number of steps as compared to the traditional synthesis of HS oligosaccharides from monosaccharide building blocks. Combined with computational insight, we identify a new class of four trisaccharide compounds derived from the aminoglycoside tobramycin that mimic natural HS and have a strong binding to heparanase but a low affinity for off-target platelet factor-4 protein.


Assuntos
Aminoglicosídeos , Heparitina Sulfato , Aminoglicosídeos/farmacologia , Heparitina Sulfato/química , Proteínas/metabolismo , Oligossacarídeos/química , Dissacarídeos
2.
ACS Catal ; 11(4): 2108-2120, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-34336371

RESUMO

Phenanthroline is a heterocyclic aromatic organic compound and commonly used in coordination chemistry acting as a bidentate ligand. The C4 and C7 positions of phenanthroline can often be substituted to change the binding capabilities of the ligand. Recently, there has been a push in the field of chemistry to create environmental-friendly chemical methodologies by utilizing catalysts and minimizing solvent. Herein, we have illustrated how, at high concentrations with minimal use of solvent, the C4 and C7 positions of phenanthroline can be tuned to develop an efficient and stereoselective catalyst for the formation of α-1,2-cis-fluorinated glycosides. By activating 2-deoxy-2-fluoro glycosyl halides with phenanthroline-based catalysts, we have been able to achieve glycosylations with high levels of α-selectivities and moderate to high yields. The catalytic system has been applied to several glycosyl halide electrophiles with a range of glycosyl nucleophilic acceptors. The proposed mechanism for this catalytic glycosylation system has been investigated by density functional theory calculations, indicating that the double SN2 displacement pathways with phenanthroline catalysts have lower barriers and ensure stereoselective formation of α-1,2-cis-2-fluoro glycosides.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA