Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(3)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38591465

RESUMO

The paper presents the investigation of the biological properties of Poly(Lactide)-Copper composite material obtained by sputter deposition of copper onto Poly(lactide) melt-blown nonwoven fabrics. The functionalized composite material was subjected to microbial activity tests against colonies of Gram-positive (Staphylococcus aureus), Gram-negative (Escherichia coli, Pseudomonas aeruginosa) bacteria, Chaetomium globosum and Candida albicans fungal mold species and biochemical-hematological tests including the evaluation of the Activated Partial Thromboplastin Time, Prothrombin Time, Thrombin Time and electron microscopy fibrin network imaging. The substantial antimicrobial and antifungal activities of the Poly(Lactide)-Copper composite suggests potential applications as an antibacterial/antifungal material. The unmodified Poly(Lactide) fabric showed accelerated human blood plasma clotting in the intrinsic pathway, while copper plating abolished this effect. Unmodified PLA itself could be used for the preparation of wound dressing materials, accelerating coagulation in the case of hemorrhages, and its modifications with the use of various metals might be applied as new customized materials where blood coagulation process could be well controlled, yielding additional anti-pathogen effects.

2.
Materials (Basel) ; 17(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38541509

RESUMO

The paper presents the new eco-friendly method of bleaching process of the cellulose fibre materials. Cellulose materials were bleached using hydrogen peroxide (both in aqueous solution, vapours, ozone and by the combined action of gaseous hydrogen peroxide and ozone. The method using hydrogen peroxide in aqueous solution presents the standard procedure and was used as the comparison technique. The bleaching processes using gaseous oxidants were carried out in a prototype device for dry, low-temperature treatment of fibrous materials with the use of oxidising agents in the gas phase. The influence of the innovative gas-phase bleaching method on the cotton samples' properties was analysed by Scanning Electron Microscopy (SEM), evaluation of the colour and whiteness, assessment of the polymerisation degree (DP), analysis of the mechanical properties and sorption capacity as well as microbiological assessment against colonies of Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria. The comparison of the obtained results led to the conclusion that the bleaching processes using gas-phase agents-vaporised hydrogen peroxide, ozone or their combination-are non-invasive. The applied bleaching processes resulted in a slightly lower whiteness parameters than standard bath bleaching. After the bleaching processes with ozone and vaporised hydrogen peroxide separately, the decrease in the DP and tensile strength was similar to that observed after the bleaching with aqueous H2O2. When both processes were used together, a higher reduction in DP and tensile strength was noticed. Both oxidising agents showed a strong biocidal effect against bacteria. Gas-phase bleaching procedures, due to the lower temperature (35 °C vs. 98 °C) and minimal water consumption, have economic and environmental advantages, which allows their use in semi-industrial applications. It has been shown that the treatment of cotton fabrics using ozone and hydrogen peroxide in the gas phase allows to simultaneously obtain the bleaching and disinfection effect.

3.
Molecules ; 25(23)2020 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-33287209

RESUMO

One of the directions of development in the textiles industry is the search for new technologies for producing modern multifunctional products. New solutions are sought to obtain materials that will protect humans against the harmful effects of the environment, including such factors as the activity of microorganisms and UV radiation. Products made of natural cellulose fibers are often used. In the case of this type of material, it is very important to perform appropriate pretreatment before subsequent technological processes. This treatment has the aim of removing impurities from the surface of the fibers, which results in the improvement of sorption properties and adhesion, leading directly to the better penetration of dyes and chemical modifiers into the structure of the materials. In this work, linen fabrics were subjected to a new, innovative treatment being a combination of bio-pretreatment using laccase from Cerrena unicolor and modification with CuO-SiO2 hybrid oxide microparticles by a dip-coating method. To compare the effect of alkaline or enzymatic pretreatment on the microstructure of the linen woven fabrics, SEM analysis was performed. The new textile products obtained after this combined process exhibit very good antimicrobial activity against Candida albicans, significant antibacterial activity against the Gram-negative Escherichia coli and the Gram-positive Staphylococcus aureus, as well as very good UV protection properties (ultraviolet protection factor (UPF) > 40). These innovative materials can be used especially for clothing or outdoor textiles for which resistance to microorganisms is required, as well as to protect people who are exposed to long-term, harmful effects of UV radiation.


Assuntos
Antiácidos/química , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Roupas de Cama, Mesa e Banho , Corantes/química , Polyporales/química , Dióxido de Silício/química , Têxteis , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA