Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
EMBO J ; 43(7): 1164-1186, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38396301

RESUMO

Ferroptosis is a regulated form of necrotic cell death caused by iron-dependent accumulation of oxidized phospholipids in cellular membranes, culminating in plasma membrane rupture (PMR) and cell lysis. PMR is also a hallmark of other types of programmed necrosis, such as pyroptosis and necroptosis, where it is initiated by dedicated pore-forming cell death-executing factors. However, whether ferroptosis-associated PMR is also actively executed by proteins or driven by osmotic pressure remains unknown. Here, we investigate a potential ferroptosis role of ninjurin-1 (NINJ1), a recently identified executor of pyroptosis-associated PMR. We report that NINJ1 oligomerizes during ferroptosis, and that Ninj1-deficiency protects macrophages and fibroblasts from ferroptosis-associated PMR. Mechanistically, we find that NINJ1 is dispensable for the initial steps of ferroptosis, such as lipid peroxidation, channel-mediated calcium influx, and cell swelling. In contrast, NINJ1 is required for early loss of plasma membrane integrity, which precedes complete PMR. Furthermore, NINJ1 mediates the release of cytosolic proteins and danger-associated molecular pattern (DAMP) molecules from ferroptotic cells, suggesting that targeting NINJ1 could be a therapeutic option to reduce ferroptosis-associated inflammation.


Assuntos
Alarminas , Ferroptose , Humanos , Necrose/metabolismo , Morte Celular , Membrana Celular/metabolismo , Fatores de Crescimento Neural/metabolismo , Moléculas de Adesão Celular Neuronais/metabolismo
2.
Cell Host Microbe ; 29(8): 1316-1332.e12, 2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34237247

RESUMO

Intracellular bacterial pathogens inject effector proteins to hijack host cellular processes and promote their survival and proliferation. To systematically map effector-host protein-protein interactions (PPIs) during infection, we generated a library of 32 Salmonella enterica serovar Typhimurium (STm) strains expressing chromosomally encoded affinity-tagged effectors and quantified PPIs in macrophages and epithelial cells. We identified 446 effector-host PPIs, 25 of which were previously described, and validated 13 by reciprocal co-immunoprecipitation. While effectors converged on the same host cellular processes, most had multiple targets, which often differed between cell types. We demonstrate that SseJ, SseL, and SifA modulate cholesterol accumulation at the Salmonella-containing vacuole (SCV) partially via the cholesterol transporter Niemann-Pick C1 protein. PipB recruits the organelle contact site protein PDZD8 to the SCV, and SteC promotes actin bundling by phosphorylating formin-like proteins. This study provides a method for probing host-pathogen PPIs during infection and a resource for interrogating STm effector mechanisms.


Assuntos
Interações Hospedeiro-Patógeno/fisiologia , Domínios e Motivos de Interação entre Proteínas , Salmonella enterica/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Bactérias , Proteínas de Bactérias/metabolismo , Células Epiteliais/microbiologia , Feminino , Células HeLa , Humanos , Macrófagos/microbiologia , Masculino , Camundongos , Células RAW 264.7 , Salmonella enterica/genética , Salmonella typhimurium/metabolismo
3.
Mol Syst Biol ; 17(2): e10188, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33590968

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a global threat to human health and has compromised economic stability. In addition to the development of an effective vaccine, it is imperative to understand how SARS-CoV-2 hijacks host cellular machineries on a system-wide scale so that potential host-directed therapies can be developed. In situ proteome-wide abundance and thermal stability measurements using thermal proteome profiling (TPP) can inform on global changes in protein activity. Here we adapted TPP to high biosafety conditions amenable to SARS-CoV-2 handling. We discovered pronounced temporal alterations in host protein thermostability during infection, which converged on cellular processes including cell cycle, microtubule and RNA splicing regulation. Pharmacological inhibition of host proteins displaying altered thermal stability or abundance during infection suppressed SARS-CoV-2 replication. Overall, this work serves as a framework for expanding TPP workflows to globally important human pathogens that require high biosafety containment and provides deeper resolution into the molecular changes induced by SARS-CoV-2 infection.


Assuntos
COVID-19/metabolismo , Interações Hospedeiro-Patógeno , Estabilidade Proteica , SARS-CoV-2/fisiologia , Proteínas Virais/metabolismo , Antivirais/farmacologia , COVID-19/virologia , Humanos , Proteoma , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/metabolismo , Temperatura , Replicação Viral/efeitos dos fármacos
4.
Ann Biomed Eng ; 46(1): 1-13, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29019076

RESUMO

Following the footprints of Bill Gates, Steve Jobs and Mark Zuckerberg, there has been a misconception that students are better off quitting their studies to bring to life their ideas, create jobs and monetize their inventions. Having historically transitioned from manpower to mind power, we live in one of the most rapidly changing times in human history. As a result, academic institutions that are supposed to be pioneers and educators of the next generations have started to realize that they need to adapt to a new system, and change their policies to be more flexible towards patent ownership and commercialization. There is an infrastructure being developed towards students starting their own businesses while continuing with their studies. This paper aims to provide an overview of the existing landscape, the exciting rewards as well as risks awaiting a student entrepreneur, the challenges of the present ecosystem, and questions to consider prior to embarking on such a journey. Various entities influencing the start-up environment are considered, specifically for the medical technology sector. These parties include but are not limited to: scientists, clinicians, investors, academic institutions and governments. A special focus will be set on the seemingly unbridgeable gap between founding a company and a scientific career.


Assuntos
Empreendedorismo , Estudantes , Tecnologia , Equipamentos e Provisões , Humanos , Invenções
5.
Biofabrication ; 9(1): 015020, 2017 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-28195834

RESUMO

Acoustic force patterning is an emerging technology that provides a platform to control the spatial location of cells in a rapid, accurate, yet contactless manner. However, very few studies have been reported on the usage of acoustic force patterning for the rapid arrangement of biological objects, such as cells, in a three-dimensional (3D) environment. In this study, we report on a bio-acoustic force patterning technique, which uses surface acoustic waves (SAWs) for the rapid arrangement of cells within an extracellular matrix-based hydrogel such as gelatin methacryloyl (GelMA). A proof-of-principle was achieved through both simulations and experiments based on the in-house fabricated piezoelectric SAW transducers, which enabled us to explore the effects of various parameters on the performance of the built construct. The SAWs were applied in a fashion that generated standing SAWs (SSAWs) on the substrate, the energy of which subsequently was transferred into the gel, creating a rapid, and contactless alignment of the cells (<10 s, based on the experimental conditions). Following ultraviolet radiation induced photo-crosslinking of the cell encapsulated GelMA pre-polymer solution, the patterned cardiac cells readily spread after alignment in the GelMA hydrogel and demonstrated beating activity in 5-7 days. The described acoustic force assembly method can be utilized not only to control the spatial distribution of the cells inside a 3D construct, but can also preserve the viability and functionality of the patterned cells (e.g. beating rates of cardiac cells). This platform can be potentially employed in a diverse range of applications, whether it is for tissue engineering, in vitro cell studies, or creating 3D biomimetic tissue structures.


Assuntos
Gelatina/química , Hidrogéis/química , Som , Animais , Técnicas de Cultura de Células/instrumentação , Sobrevivência Celular , Células Cultivadas , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Polímeros/química , Ratos , Alicerces Teciduais/química , Raios Ultravioleta
6.
Lab Chip ; 16(21): 4097-4105, 2016 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-27722710

RESUMO

Pathologic thrombosis kills more people than cancer and trauma combined; it is associated with significant disability and morbidity, and represents a major healthcare burden. Despite advancements in medical therapies and imaging, there is often incomplete resolution of the thrombus. The residual thrombus can undergo fibrotic changes over time through infiltration of fibroblasts from the surrounding tissues and eventually transform into a permanent clot often associated with post-thrombotic syndrome. In order to understand the importance of cellular interactions and the impact of potential therapeutics to treat thrombosis, an in vitro platform using human cells and blood components would be beneficial. Towards achieving this aim, there have been studies utilizing the capabilities of microdevices to study the hemodynamics associated with thrombosis. In this work, we further exploited the utilization of 3D bioprinting technology, for the construction of a highly biomimetic thrombosis-on-a-chip model. The model consisted of microchannels coated with a layer of confluent human endothelium embedded in a gelatin methacryloyl (GelMA) hydrogel, where human whole blood was infused and induced to form thrombi. Continuous perfusion with tissue plasmin activator led to dissolution of non-fibrotic clots, revealing clinical relevance of the model. Further encapsulating fibroblasts in the GelMA matrix demonstrated the potential migration of these cells into the clot and subsequent deposition of collagen type I over time, facilitating fibrosis remodeling that resembled the in vivo scenario. Our study suggests that in vitro 3D bioprinted blood coagulation models can be used to study the pathology of fibrosis, and particularly, in thrombosis. This versatile platform may be conveniently extended to other vascularized fibrotic disease models.


Assuntos
Bioimpressão/instrumentação , Dispositivos Lab-On-A-Chip , Trombose , Colágeno Tipo I/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos
7.
Anal Bioanal Chem ; 408(8): 2055-67, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26493978

RESUMO

Cysteine is unique among the proteinogenic amino acids due to its ability to form disulfide bonds. While this property is of vital importance for protein structures and biological processes, it causes difficulties for the mass spectrometric identification of cysteine-containing peptides. A common approach to overcome these problems in bottom-up proteomics is the reduction and covalent modification of sulfhydryl groups prior to enzymatic digestion. In this study, established alkylating agents and N-maleoyl amino acids with variable hydrophobicity were characterized with respect to a variety of relevant parameters and subsequently evaluated in a large-scale analysis using different ion sources. Depending on the compound, the ion source had a profound impact on the relative and absolute identification of cysteine-containing peptides. The best results were obtained by derivatization of the cysteine residues with 4-vinylpyridine and subsequent matrix-assisted laser desorption ionization (MALDI). Modification with 4-vinylpyridine increased the number of cysteine-containing peptides identified with any other compound using LC-MALDI/MS at least by a factor of 2. This experimental observation is mirrored by differences in the gas-phase basicities, which were computed for methyl thiolate derivatives of the compounds using density functional theory. With electrospray ionization (ESI), complementary use of reagents from three different compound classes, e.g., iodoacetamide, 4-vinylpyridine, and N-maleoyl beta-alanine, was beneficial compared to the application of a single reagent.


Assuntos
Cisteína/análise , Peptídeos/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Alquilação , Sequência de Aminoácidos , Aminoácidos/química , Escherichia coli/química , Proteínas de Escherichia coli/química , Humanos , Hidrólise , Iodoacetamida/química , Maleatos/química , Modelos Moleculares , Proteômica/métodos , Piridinas/química
8.
Mol Biosyst ; 10(7): 1709-18, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24457530

RESUMO

Non-ribosomal peptide synthetases (NRPSs) are enzymes that catalyze ribosome-independent production of small peptides, most of which are bioactive. NRPSs act as peptide assembly lines where individual, often interconnected modules each incorporate a specific amino acid into the nascent chain. The modules themselves consist of several domains that function in the activation, modification and condensation of the substrate. NRPSs are evidently modular, yet experimental proof of the ability to engineer desired permutations of domains and modules is still sought. Here, we use a synthetic-biology approach to create a small library of engineered NRPSs, in which the domain responsible for carrying the activated amino acid (T domain) is exchanged with natural or synthetic T domains. As a model system, we employ the single-module NRPS IndC from Photorhabdus luminescens that produces the blue pigment indigoidine. As chassis we use Escherichia coli. We demonstrate that heterologous T domain exchange is possible, even for T domains derived from different organisms. Interestingly, substitution of the native T domain with a synthetic one enhanced indigoidine production. Moreover, we show that selection of appropriate inter-domain linker regions is critical for functionality. Taken together, our results extend the engineering avenues for NRPSs, as they point out the possibility of combining domain sequences coming from different pathways, organisms or from conservation criteria. Moreover, our data suggest that NRPSs can be rationally engineered to control the level of production of the corresponding peptides. This could have important implications for industrial and medical applications.


Assuntos
Proteínas de Bactérias/genética , Peptídeo Sintases/genética , Photorhabdus/enzimologia , Piperidonas/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Escherichia coli/genética , Variação Genética , Peptídeo Sintases/metabolismo , Peptídeos/metabolismo , Engenharia de Proteínas/métodos , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA