Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Biol Open ; 2(11): 1264-9, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24244864

RESUMO

Components of the Par-complex, atypical PKC and Par3, have been found to be downregulated upon activation of NF-κB in intestinal epithelial cells. To determine their possible role in pro-inflammatory responses we transduced Caco-2 human colon carcinoma cells with constitutively active (ca) PKCι or anti-Par3 shRNA-expressing lentiviral particles. Contrary to previous reports in other cell types, ca-PKCι did not activate, but rather decreased, baseline NF-κB activity in a luminiscence reporter assay. An identical observation applied to a PB1 domain deletion PKCι, which fails to localize to the tight-junction. Conversely, as expected, the same ca-PKCι activated NF-κB in non-polarized HEK293 cells. Likewise, knockdown of Par3 increased NF-κB activity and, surprisingly, greatly enhanced its response to TNFα, as shown by transcription of IL-8, GRO-1, GRO-2 and GRO-3. We conclude that aPKC and Par3 are inhibitors of the canonical NF-κB activation pathway, although perhaps acting through independent pathways, and may be involved in pro-inflammatory responses.

3.
Mol Biol Cell ; 23(9): 1664-74, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22398726

RESUMO

Phosphorylation of the activation domain of protein kinase C (PKC) isoforms is essential to start a conformational change that results in an active catalytic domain. This activation is necessary not only for newly synthesized molecules, but also for kinase molecules that become dephosphorylated and need to be refolded and rephosphorylated. This "rescue" mechanism is responsible for the maintenance of the steady-state levels of atypical PKC (aPKC [PKCι/λ and ζ]) and is blocked in inflammation. Although there is consensus that phosphoinositide-dependent protein kinase 1 (PDK1) is the activating kinase for newly synthesized molecules, it is unclear what kinase performs that function during the rescue and where the rescue takes place. To identify the activating kinase during the rescue mechanism, we inhibited protein synthesis and analyzed the stability of the remaining aPKC pool. PDK1 knockdown and two different PDK1 inhibitors-BX-912 and a specific pseudosubstrate peptide-destabilized PKCι. PDK1 coimmunoprecipitated with PKCι in cells without protein synthesis, confirming that the interaction is direct. In addition, we showed that PDK1 aids the rescue of aPKC in in vitro rephosphorylation assays using immunodepletion and rescue with recombinant protein. Surprisingly, we found that in Caco-2 epithelial cells and intestinal crypt enterocytes PDK1 distributes to an apical membrane compartment comprising plasma membrane and apical endosomes, which, in turn, are in close contact with intermediate filaments. PDK1 comigrated with the Rab11 compartment and, to some extent, with the transferrin compartment in sucrose gradients. PDK1, pT555-aPKC, and pAkt were dependent on dynamin activity. These results highlight a novel signaling function of apical endosomes in polarized cells.


Assuntos
Endossomos/enzimologia , Enterócitos/enzimologia , Filamentos Intermediários/enzimologia , Proteína Quinase C/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Quinases Dependentes de 3-Fosfoinositídeo , Células CACO-2 , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Polaridade Celular/fisiologia , Enterócitos/citologia , Técnicas de Silenciamento de Genes , Humanos , Fosforilação , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais
4.
Virchows Arch ; 459(3): 331-8, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21667320

RESUMO

Epithelial barrier function is contingent on appropriate polarization of key protein components. Work in intestinal epithelial cell cultures and animal models of bowel inflammation suggested that atypical PKC (aPKC), the kinase component of the Par3-Par6 polarity complex, is downregulated by pro-inflammatory signaling. Data from other laboratories showed the participation of myosin light chain kinase in intestinal inflammation, but there is paucity of evidence for assembly of its major target, non-muscle myosin II, in inflammatory bowel disease (IBD). In addition, we showed before that non-muscle myosin IIA (nmMyoIIA) is upregulated in intestinal inflammation in mice and TNFα-treated Caco-2 cells. Thus far, it is unknown if a similar phenomena occur in patients with IBD. Moreover, it is unclear whether aPKC downregulation is directly correlated with local mucosal inflammation or occurs in uninvolved areas. Frozen sections from colonoscopy material were stained for immunofluorescence with extensively validated specific antibodies against phosphorylated aPKC turn motif (active form) and nmMyoIIA. Inflammation was scored for the local area from where the material was obtained. We found a significant negative correlation between the expression of active aPKC and local inflammation, and a significant increase in the apical expression of nmMyoIIA in surface colon epithelia in inflamed areas, but not in non-inflamed mucosa even in the same patients. Changes in aPKC and nmMyoIIA expression are likely to participate in the pathogenesis of epithelial barrier function in response to local pro-inflammatory signals. These results provide a rationale for pursuing mechanistic studies on the regulation of these proteins.


Assuntos
Doenças Inflamatórias Intestinais/fisiopatologia , Isoenzimas/metabolismo , Miosina não Muscular Tipo IIA/metabolismo , Proteína Quinase C/metabolismo , Membrana Celular/metabolismo , Polaridade Celular , Estudos de Coortes , Colite/metabolismo , Colo/metabolismo , Regulação para Baixo , Feminino , Imunofluorescência , Humanos , Mucosa Intestinal/metabolismo , Masculino , Microscopia Confocal , Permeabilidade , Fosforilação , Coloração e Rotulagem , Distribuição Tecidual , Regulação para Cima
5.
Mol Cell Biol ; 31(4): 756-65, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21135124

RESUMO

Inflammatory processes disrupt the barrier function in epithelia. Increased permeability often leads to chronic of inflammation. Important among other cytokines, tumor necrosis factor alpha (TNF-α) initiates an NF-κB-mediated response that leads to upregulation of myosin light chain kinase (MLCK), a hallmark of the pathogenesis of inflammatory bowel disease. Here, we found that two components of the evolutionarily conserved organizer of tight junctions and polarity, the polarity complex (atypical protein kinase C [aPKC]-PAR6-PAR3) were downregulated by TNF-α signaling in intestinal epithelial cells and also in vivo during intestinal inflammation. Decreases in aPKC levels were due to decreased chaperoning activity of Hsp70 proteins, with failure of the aPKC rescue machinery, and these effects were rescued by NF-κB inhibition. Comparable downregulation of aPKC shRNA phenocopied effects of TNF-α signaling, including apical nonmuscle myosin II accumulation and myosin light chain phosphorylation. These effects, including ZO-1 downregulation, were rescued by overexpression of constitutively active aPKC. We conclude that this novel mechanism is a complementary effector pathway for TNF-α signaling.


Assuntos
Inflamação/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Sequência de Bases , Células CACO-2 , Proteínas de Ciclo Celular/metabolismo , Polaridade Celular , Proteínas de Choque Térmico HSC70/metabolismo , Proteínas de Choque Térmico HSP70/deficiência , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Humanos , Inflamação/genética , Doenças Inflamatórias Intestinais/etiologia , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Proteínas Motores Moleculares/genética , Proteínas Motores Moleculares/metabolismo , Complexos Multiproteicos , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C/genética , Proteína Quinase C/metabolismo , Processamento de Proteína Pós-Traducional , RNA Interferente Pequeno/genética , Transdução de Sinais , Junções Íntimas/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Regulação para Cima
6.
J Cell Sci ; 122(Pt 14): 2491-503, 2009 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-19549684

RESUMO

Atypical PKC (PKC iota) is a key organizer of cellular asymmetry. Sequential extractions of intestinal cells showed a pool of enzymatically active PKC iota and the chaperone Hsp70.1 attached to the apical cytoskeleton. Pull-down experiments using purified and recombinant proteins showed a complex of Hsp70 and atypical PKC on filamentous keratins. Transgenic animals overexpressing keratin 8 displayed delocalization of Hsp70 and atypical PKC. Two different keratin-null mouse models, as well as keratin-8 knockdown cells in tissue culture, also showed redistribution of Hsp70 and a sharp decrease in the active form of atypical PKC, which was also reduced by Hsp70 knockdown. An in-vitro turn motif rephosphorylation assay indicated that PKC iota is dephosphorylated by prolonged activity. The Triton-soluble fraction could rephosphorylate PKC iota only when supplemented with the cytoskeletal pellet or filamentous highly purified keratins, a function abolished by immunodepletion of Hsp70 but rescued by recombinant Hsp70. We conclude that both filamentous keratins and Hsp70 are required for the rescue rephosphorylation of mature atypical PKC, regulating the subcellular distribution and steady-state levels of active PKC iota.


Assuntos
Enterócitos/enzimologia , Proteínas de Choque Térmico HSP70/metabolismo , Filamentos Intermediários/enzimologia , Isoenzimas/metabolismo , Queratinas/metabolismo , Proteína Quinase C/metabolismo , Animais , Células CACO-2 , Proteínas de Choque Térmico HSP70/genética , Humanos , Isoenzimas/genética , Queratina-18/metabolismo , Queratina-19/metabolismo , Queratina-8/metabolismo , Queratinas/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Fosforilação , Proteína Quinase C/genética , Processamento de Proteína Pós-Traducional , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interferência de RNA
7.
J Cell Sci ; 121(Pt 5): 644-54, 2008 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-18270268

RESUMO

Atypical protein kinase iota (PKCiota) is a key organizer of the apical domain in epithelial cells. Ezrin is a cytosolic protein that, upon activation by phosphorylation of T567, is localized under the apical membrane where it connects actin filaments to membrane proteins and recruits protein kinase A (PKA). To identify the kinase that phosphorylates ezrin T567 in simple epithelia, we analyzed the expression of active PKC and the appearance of T567-P during enterocyte differentiation in vivo. PKCiota phosphorylated ezrin on T567 in vitro, and in Sf9 cells that do not activate human ezrin. In CACO-2 human intestinal cells in culture, PKCiota co-immunoprecipitated with ezrin and was knocked down by shRNA expression. The resulting phenotype showed a modest decrease in total ezrin, but a steep decrease in T567 phosphorylation. The PKCiota-depleted cells showed fewer and shorter microvilli and redistribution of the PKA regulatory subunit. Expression of a dominant-negative form of PKCiota also decreased T567-P signal, and expression of a constitutively active PKCiota mutant showed depolarized distribution of T567-P. We conclude that, although other molecular mechanisms contribute to ezrin activation, apically localized phosphorylation by PKCiota is essential for the activation and normal distribution of ezrin at the early stages of intestinal epithelial cell differentiation.


Assuntos
Membrana Celular/enzimologia , Proteínas do Citoesqueleto/metabolismo , Mucosa Intestinal/enzimologia , Isoenzimas/metabolismo , Microdomínios da Membrana/enzimologia , Proteína Quinase C/metabolismo , Sequência de Aminoácidos/fisiologia , Animais , Sítios de Ligação/fisiologia , Células CACO-2 , Diferenciação Celular/fisiologia , Membrana Celular/ultraestrutura , Polaridade Celular/fisiologia , Proteínas do Citoesqueleto/química , Regulação para Baixo/fisiologia , Ativação Enzimática/fisiologia , Humanos , Insetos , Mucosa Intestinal/citologia , Isoenzimas/genética , Microdomínios da Membrana/ultraestrutura , Camundongos , Microvilosidades/enzimologia , Microvilosidades/ultraestrutura , Fosforilação , Proteína Quinase C/genética , Subunidades Proteicas/metabolismo , RNA Interferente Pequeno/genética , Tirosina/metabolismo
8.
Exp Cell Res ; 313(10): 2255-64, 2007 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-17425955

RESUMO

Intermediate filaments have long been considered mechanical components of the cell that provide resistance to deformation stress. Practical experimental problems, including insolubility, lack of good pharmacological antagonists, and the paucity of powerful genetic models have handicapped the research of other functions. In single-layered epithelial cells, keratin intermediate filaments are cortical, either apically polarized or apico-lateral. This review analyzes phenotypes of genetic manipulations of simple epithelial cell keratins in mice and Caenorhabditis elegans that strongly suggest a role of keratins in apico-basal polarization and membrane traffic. Published evidence that intermediate filaments can act as scaffolds for proteins involved in membrane traffic and signaling is also discussed. Such a scaffolding function would generate a highly polarized compartment within the cytoplasm of simple epithelial cells. While in most cases mechanistic explanations for the keratin-null or overexpression phenotypes are still missing, it is hoped that investigators will be encouraged to study these as yet poorly understood functions of intermediate filaments.


Assuntos
Polaridade Celular/fisiologia , Células Epiteliais/metabolismo , Proteínas de Filamentos Intermediários/metabolismo , Filamentos Intermediários/metabolismo , Animais , Células Epiteliais/ultraestrutura , Exocitose/fisiologia , Humanos , Proteínas de Filamentos Intermediários/ultraestrutura , Filamentos Intermediários/ultraestrutura , Invertebrados/metabolismo , Queratinas/metabolismo , Queratinas/ultraestrutura , Mamíferos/metabolismo , Camundongos , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura
9.
Mol Biol Cell ; 18(3): 781-94, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17182859

RESUMO

In simple epithelial cells, attachment of microtubule-organizing centers (MTOCs) to intermediate filaments (IFs) enables their localization to the apical domain. It is released by cyclin-dependent kinase (Cdk)1 phosphorylation. Here, we identified a component of the gamma-tubulin ring complex, gamma-tubulin complex protein (GCP)6, as a keratin partner in yeast two-hybrid assays. This was validated by binding in vitro of both purified full-length HIS-tagged GCP6 and a GCP6(1397-1819) fragment to keratins, and pull-down with native IFs. Keratin binding was blocked by Cdk1-mediated phosphorylation of GCP6. GCP6 was apical in normal enterocytes but diffuse in K8-null cells. GCP6 knockdown with short hairpin RNAs (shRNAs) in CACO-2 cells resulted in gamma-tubulin signal scattered throughout the cytoplasm, microtubules (MTs) in the perinuclear and basal regions, and microtubule-nucleating activity localized deep in the cytoplasm. Expression of a small fragment GCP6(1397-1513) that competes binding to keratins in vitro displaced gamma-tubulin from the cytoskeleton and resulted in depolarization of gamma-tubulin and changes in the distribution of microtubules and microtubule nucleation sites. Expression of a full-length S1397D mutant in the Cdk1 phosphorylation site delocalized centrosomes. We conclude that GCP6 participates in the attachment of MTOCs to IFs in epithelial cells and is among the factors that determine the peculiar architecture of microtubules in polarized epithelia.


Assuntos
Células Epiteliais/metabolismo , Filamentos Intermediários/metabolismo , Queratinas/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Animais , Proteína Quinase CDC2/metabolismo , Células COS , Polaridade Celular , Chlorocebus aethiops , Regulação para Baixo/genética , Células Epiteliais/citologia , Histonas/genética , Humanos , Camundongos , Proteínas Associadas aos Microtúbulos/genética , Centro Organizador dos Microtúbulos/metabolismo , Mutação/genética , Fosforilação , Regiões Promotoras Genéticas/genética , Ligação Proteica , Transporte Proteico , RNA Interferente Pequeno/metabolismo , Transcrição Gênica , Tubulina (Proteína)/metabolismo
10.
Mol Biol Cell ; 16(9): 4096-107, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15987737

RESUMO

Ezrin connects the apical F-actin scaffold to membrane proteins in the apical brush border of intestinal epithelial cells. Yet, the mechanisms that recruit ezrin to the apical domain remain obscure. Using stable CACO-2 transfectants expressing keratin 8 (K8) antisense RNA under a tetracycline-responsive element, we showed that the actin-ezrin scaffold cannot assemble in the absence of intermediate filaments (IFs). Overexpression of ezrin partially rescued this phenotype. Overexpression of K8 in mice also disrupted the assembly of the brush border, but ezrin distributed away from the apical membrane in spots along supernumerary IFs. In cytochalasin D-treated cells ezrin localized to a subapical compartment and coimmunoprecipitated with IFs. Overexpression of ezrin in undifferentiated cells showed a Triton-insoluble ezrin compartment negative for phospho-T567 (dormant) ezrin visualized as spots along IFs. Pulse-chase analysis showed that Triton-insoluble, newly synthesized ezrin transiently coimmunoprecipitates with IFs during the first 30 min of the chase. Dormant, but not active (p-T567), ezrin bound in vitro to isolated denatured keratins in Far-Western analysis and to native IFs in pull-down assays. We conclude that a transient association to IFs is an early step in the polarized assembly of apical ezrin in intestinal epithelial cells.


Assuntos
Células Epiteliais/metabolismo , Filamentos Intermediários/metabolismo , Mucosa Intestinal/metabolismo , Fosfoproteínas/metabolismo , Animais , Células CACO-2 , Diferenciação Celular/fisiologia , Linhagem Celular , Proteínas do Citoesqueleto , Enterócitos/citologia , Enterócitos/metabolismo , Humanos , Mucosa Intestinal/citologia , Queratina-8 , Queratinas/biossíntese , Queratinas/genética , Camundongos , Camundongos Transgênicos , Octoxinol
11.
Physiol Plant ; 121(1): 27-34, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15086814

RESUMO

Reversibly glycosylated polypeptides (RGPs) belong to a family of self-glycosylating proteins believed to be involved in plant polysaccharide synthesis. The precise function of these enzymes remains to be elucidated. Our results showed that the RGP 38-kDa subunit is phosphorylated in potato extracts (Solanum tuberosum L.). An increase in the self-glycosylation of Solanum tuberosum RGP (StRGP) 38-kDa subunit was observed after alkaline phosphatase (AP) treatment. Our results suggest that phosphorylation of StRGP appears to regulate its self-glycosylation. It was determined that when the StRGP reaction was carried out in the presence of UDP-[(14)C]Glc as the sugar donor and then 1 mM UDP was added in a chase-out experiment, radioactive UDP-Glc was obtained indicating that StRGP reaction seems to be reversible. The anomeric configuration of transferred sugars to StRGP protein was also studied.

12.
Plant Mol Biol ; 52(4): 705-14, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-13677461

RESUMO

Many plant autocatalytic glycosyltransferases are implicated in plant polysaccharide biosynthesis. Cloning of cDNAs encoding potato (Solanum tuberosum L.) UDP-Glc:protein transglucosylase (UPTG, EC 2.4.1.112) and expression of the cDNA clone E11 in Escherichia coli have been previously reported. Here, we studied the functional expression of a second cDNA of the enzyme (E2 clone). Northern blots analysis, with specific cDNA probes for the two UPTG isoforms, showed a differential expression pattern of mRNA levels in different potato tissues. Moreover, both UPTG recombinant enzymes showed different kinetic parameters. The recombinant protein encoded by E2 clone has an apparent Imax for UDP-Xyl and UDP-Gal, significantly higher than for UDP-Glc. The Km values for UDP-Glc were 0.45-0.71 microM and the values for UDP-Xyl and UDP-Gal were slightly higher than that of the UDP-Glc (1.2-2.71 microM) for both UPTG recombinant enzymes. The present study revealed further evidence for the proposed role of UPTG in the synthesis of cell wall polysaccharide. It was found a correlation between UPTG transcript levels and the growing state of the tissues in which there was an active synthesis of cell wall components. Southern blot analysis indicates that at least three genes encoding UPTG are present in potato genome. Phylogenetic analysis of both UPTG recombinant proteins showed that they are members of the RGP subfamilies from dicots.


Assuntos
Glucosiltransferases/genética , Solanum tuberosum/genética , Southern Blotting , DNA de Plantas/genética , Escherichia coli/genética , Dosagem de Genes , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Glucosiltransferases/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Dados de Sequência Molecular , Filogenia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Solanum tuberosum/enzimologia , Especificidade por Substrato
13.
Am J Physiol Renal Physiol ; 285(2): F230-40, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12709392

RESUMO

We have previously shown that microtubule-organizing centers (MTOCs) attach to the apical network of intermediate filaments (IFs) in epithelial cells in culture and in epithelia in vivo. Because that attachment is important for the architecture of microtubules (MTs) in epithelia, we analyzed whether chemical anoxia in LLC-PK1 and CACO-2 cells or unilateral ischemia-reperfusion in rat kidney (performed under fluorane anesthesia) had an effect on the binding and distribution of MTOCs. In culture, we found that chemical anoxia induces MTOC detachment from IFs by morphological and biochemical criteria. In reperfused rat proximal tubules, noncentrosomal MTOCs were fully detached from the cytoskeleton and scattered throughout the cytoplasm at 3 days after reperfusion, when brush borders were mostly reassembled. At that time, MTs were also fully reassembled but, as expected, lacked their normal apicobasal orientation. Two apical membrane markers expressed in S2 and S3 segments were depolarized at the same stage. At 8 days after reperfusion, membrane polarity, MTOCs, and MTs were back to normal. Na+-K+-ATPase was also found redistributed, not to the apical domain but rather to an intracellular compartment, as described by others (Alejandro VS, Nelson W, Huie P, Sibley RK, Dafoe D, Kuo P, Scandling JD Jr., and Myers BD. Kidney Int 48: 1308-1315, 1995). The prolonged depolarization of the apical membrane may have implications in the pathophysiology of acute renal failure.


Assuntos
Túbulos Renais Proximais/patologia , Túbulos Renais Proximais/fisiopatologia , Centro Organizador dos Microtúbulos/fisiologia , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/fisiopatologia , Actinas/fisiologia , Injúria Renal Aguda/patologia , Injúria Renal Aguda/fisiopatologia , Trifosfato de Adenosina/metabolismo , Animais , Biomarcadores , Células CACO-2 , Polaridade Celular/fisiologia , Centrossomo/fisiologia , Humanos , Células LLC-PK1 , Potenciais da Membrana/fisiologia , Microvilosidades/patologia , Microvilosidades/fisiologia , Trocador de Sódio e Cálcio/análise , Suínos
14.
J Biol Chem ; 277(40): 37848-54, 2002 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-12151413

RESUMO

We have shown previously that centrosomes and other microtubule-organizing centers (MTOCs) attach to the apical intermediate filament (IF) network in CACO-2 cells. In this cell line, intermediate filaments do not disorganize during mitosis. Therefore, we speculated that the trigger of the G(2)-M boundary may also detach MTOCs from their IF anchor. If that was the case, at least one of the proteins involved in the attachment must be phosphorylated by p34(cdc2) (cdk1). Using confocal microscopy and standard biochemical analysis, we found that p34(cdc2)-mediated phosphorylation indeed released MTOCs from IFs in permeabilized cells. In isolated, immunoprecipitated multiprotein complexes containing both gamma-tubulin and cytokeratin 19, p34(cdc2) phosphorylated only one protein, and phosphorylation released cytokeratin 19 from the complexes. We conclude that this as yet unidentified protein is a part of the molecular mechanism that attaches MTOCs to IFs in interphase.


Assuntos
Proteína Quinase CDC2/metabolismo , Filamentos Intermediários/metabolismo , Mucosa Intestinal/metabolismo , Proteína Quinase CDC2/efeitos dos fármacos , Células CACO-2 , Técnicas de Cultura de Células/métodos , Permeabilidade da Membrana Celular , Humanos , Filamentos Intermediários/ultraestrutura , Mucosa Intestinal/patologia , Nocodazol/farmacologia , Fosforilação , Saponinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA