Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nature ; 2024 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-39443794

RESUMO

The ability of stony corals to thrive in the oligotrophic (low-nutrient, low-productivity) surface waters of the tropical ocean is commonly attributed to their symbiotic relationship with photosynthetic dinoflagellates1,2. The evolutionary history of this symbiosis might clarify its organismal and environmental roles3, but its prevalence through time, and across taxa, morphologies and oceanic settings, is currently unclear4-6. Here we report measurements of the nitrogen isotope (15N/14N) ratio of coral-bound organic matter (CB-δ15N) in samples from Mid-Devonian reefs (Givetian, around 385 million years ago), which represent a constraint on the evolution of coral photosymbiosis. Colonial tabulate and fasciculate (dendroid) rugose corals have low CB-δ15N values (2.51 ± 0.97‰) in comparison with co-occurring solitary and (pseudo)colonial (cerioid or phaceloid) rugose corals (5.52 ± 1.63‰). The average of the isotopic difference per deposit (3.01 ± 0.58‰) is statistically indistinguishable from that observed between modern symbiont-barren and symbiont-bearing corals (3.38 ± 1.05‰). On the basis of this evidence, we infer that Mid-Devonian tabulate and some fasciculate (dendroid) rugose corals hosted active photosymbionts, while solitary and some (pseudo)colonial (cerioid or phaceloid) rugose corals did not. The low CB-δ15N values of the Devonian tabulate and fasciculate rugose corals relative to the modern range suggest that Mid-Devonian reefs formed in biogeochemical regimes analogous to the modern oligotrophic subtropical gyres. Widespread oligotrophy during the Devonian may have promoted coral photosymbiosis, the occurrence of which may explain why Devonian reefs were the most productive reef ecosystems of the Phanerozoic.

2.
Rapid Commun Mass Spectrom ; 38(1): e9650, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38073197

RESUMO

The analysis of the nitrogen (N) isotopic composition of organic matter bound to fossil biomineral structures (BB-δ15 N) using the oxidation-denitrifier (O-D) method provides a novel tool to study past changes in N cycling processes. METHODS: We report a set of methodological improvements to the O-D method, including (a) a method for sealing the reaction vials in which the oxidation of organic N to NO3 - takes place, (b) a recipe for bypassing the pH adjustment step before the bacterial conversion of NO3 - to N2 O, and (c) a method for storing recrystallized dipotassium peroxodisulfate (K2 S2 O8 ) under Ar atmosphere. RESULTS: The new sealing method eliminates the occasional contamination and vial breakage that occurred previously while increasing sample throughput. The protocol for bypassing pH adjustment does not affect BB-δ15 N, and it significantly reduces the processing time. Storage of K2 S2 O8 reagent under Ar atmosphere produces stable oxidation blanks over more than 3.5 years. We report analytical blanks, accuracy, and precision for this methodology from eight users over the course of ~3.5 years of analyses at the Max Planck Institute for Chemistry. Our method produces analytical blanks characterized by low N content (0.30 ± 0.13 nmol N, 1σ, n = 195) and stable δ15 N (-2.20 ± 3.13‰, n = 195). The analysis of reference amino acid standards USGS 40 and USGS 65 indicates an overall accuracy of -0.23 ± 0.35‰ (1σ, n = 891). The analysis of in-house fossil standards gives similar analytical precision (1σ) across a range of BB-δ15 N values and biominerals: zooxanthellate coral standard PO-1 (6.08 ± 0.21‰, n = 267), azooxanthellate coral standard LO-1 (10.20 ± 0.28‰, n = 258), foraminifera standard MF-1 (5.92 ± 0.28‰, n = 243), and tooth enamel AG-Lox (4.06 ± 0.49‰, n = 78). CONCLUSIONS: The methodological improvements significantly increase sample throughput without compromising analytical precision or accuracy down to 1 nmol of N.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA