Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Nucleic Acids Res ; 51(8): e47, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-36928528

RESUMO

In situ capturing technologies add tissue context to gene expression data, with the potential of providing a greater understanding of complex biological systems. However, splicing variants and full-length sequence heterogeneity cannot be characterized at spatial resolution with current transcriptome profiling methods. To that end, we introduce spatial isoform transcriptomics (SiT), an explorative method for characterizing spatial isoform variation and sequence heterogeneity using long-read sequencing. We show in mouse brain how SiT can be used to profile isoform expression and sequence heterogeneity in different areas of the tissue. SiT reveals regional isoform switching of Plp1 gene between different layers of the olfactory bulb, and the use of external single-cell data allows the nomination of cell types expressing each isoform. Furthermore, SiT identifies differential isoform usage for several major genes implicated in brain function (Snap25, Bin1, Gnas) that are independently validated by in situ sequencing. SiT also provides for the first time an in-depth A-to-I RNA editing map of the adult mouse brain. Data exploration can be performed through an online resource (https://www.isomics.eu), where isoform expression and RNA editing can be visualized in a spatial context.


Assuntos
Processamento Alternativo , Perfilação da Expressão Gênica , Animais , Camundongos , Análise de Sequência de RNA/métodos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Perfilação da Expressão Gênica/métodos , Expressão Gênica , Transcriptoma
2.
STAR Protoc ; 3(3): 101600, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36042886

RESUMO

Cell response variability is a starting point in cancer drug resistance that has been difficult to analyze because the tolerant cell states are short lived. Here, we present fate-seq, an approach to isolate single cells in their transient states of drug sensitivity or tolerance before profiling. The drug response is predicted in live cells, which are laser-captured by microdissection before any drug-induced change can alter their states. This framework enables the identification of the cell-state signatures causing differential cell decisions upon treatment. For complete details on the use and execution of this protocol, please refer to Meyer et al. (2020).


Assuntos
Diagnóstico por Imagem , Microdissecção , Lasers , Microdissecção/métodos
3.
Lancet Reg Health Eur ; 10: 100202, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34423327

RESUMO

BACKGROUND: Wastewater surveillance was proposed as an epidemiological tool to define the prevalence and evolution of the SARS-CoV-2 epidemics. However, most implemented SARS-CoV-2 wastewater surveillance projects were based on qPCR measurement of virus titers and did not address the mutational spectrum of SARS-CoV-2 circulating in the population. METHODS: We have implemented a nanopore RNA sequencing monitoring system in the city of Nice (France, 550,000 inhabitants). Between October 2020 and March 2021, we monthly analyzed the SARS-CoV-2 variants in 113 wastewater samples collected in the main wastewater treatment plant and 20 neighborhoods. FINDINGS: We initially detected the lineages predominant in Europe at the end of 2020 (B.1.160, B.1.177, B.1.367, B.1.474, and B.1.221). In January, a localized emergence of a variant (Spike:A522S) of the B.1.1.7 lineage occurred in one neighborhood. It rapidly spread and became dominant all over the city. Other variants of concern (B.1.351, P.1) were also detected in some neighborhoods, but at low frequency. Comparison with individual clinical samples collected during the same week showed that wastewater sequencing correctly identified the same lineages as those found in COVID-19 patients. INTERPRETATION: Wastewater sequencing allowed to document the diversity of SARS-CoV-2 sequences within the different neighborhoods of the city of Nice. Our results illustrate how sequencing of sewage samples can be used to track pathogen sequence diversity in the current pandemics and in future infectious disease outbreaks. TRANSLATION: For the French translation of the abstract see Supplementary Materials section.

4.
Cell Syst ; 11(4): 367-374.e5, 2020 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-33099406

RESUMO

Non-genetic heterogeneity observed in clonal cell populations is an immediate cause of drug resistance that remains challenging to profile because of its transient nature. Here, we coupled three single-cell technologies to link the predicted drug response of a cell to its own genome-wide transcriptomic profile. As a proof of principle, we analyzed the response to tumor-necrosis-factor-related apoptosis-inducing ligand (TRAIL) in HeLa cells to demonstrate that cell dynamics can discriminate the transient transcriptional states at the origin of cell decisions such as sensitivity and resistance. Our same-cell approach, named fate-seq, can reveal the molecular factors regulating the efficacy of a drug in clonal cells, providing therapeutic targets of non-genetic drug resistance otherwise confounded in gene expression noise. A record of this paper's transparent peer review process is included in the Supplemental Information.


Assuntos
Biomarcadores Farmacológicos/análise , Resistencia a Medicamentos Antineoplásicos/fisiologia , Análise de Célula Única/métodos , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Genômica , Células HeLa , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/genética , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo
5.
Nat Commun ; 11(1): 4025, 2020 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-32788667

RESUMO

Droplet-based high throughput single cell sequencing techniques tremendously advanced our insight into cell-to-cell heterogeneity. However, those approaches only allow analysis of one extremity of the transcript after short read sequencing. In consequence, information on splicing and sequence heterogeneity is lost. To overcome this limitation, several approaches that use long-read sequencing were introduced recently. Yet, those techniques are limited by low sequencing depth and/or lacking or inaccurate assignment of unique molecular identifiers (UMIs), which are critical for elimination of PCR bias and artifacts. We introduce ScNaUmi-seq, an approach that combines the high throughput of Oxford Nanopore sequencing with an accurate cell barcode and UMI assignment strategy. UMI guided error correction allows to generate high accuracy full length sequence information with the 10x Genomics single cell isolation system at high sequencing depths. We analyzed transcript isoform diversity in embryonic mouse brain and show that ScNaUmi-seq allows defining splicing and SNVs (RNA editing) at a single cell level.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Sequenciamento por Nanoporos , Nanoporos , Transcriptoma , Animais , Encéfalo , Expressão Gênica , Perfilação da Expressão Gênica , Genômica , Camundongos , Camundongos Endogâmicos C57BL , Isoformas de Proteínas , Receptores de AMPA/genética , Análise de Sequência de DNA/métodos , Análise de Sequência de RNA/métodos
6.
Nucleic Acids Res ; 45(7): e48, 2017 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-27940562

RESUMO

Single cell RNA sequencing approaches are instrumental in studies of cell-to-cell variability. 5΄ selective transcriptome profiling approaches allow simultaneous definition of the transcription start size and have advantages over 3΄ selective approaches which just provide internal sequences close to the 3΄ end. The only currently existing 5΄ selective approach requires costly and labor intensive fragmentation and cell barcoding after cDNA amplification. We developed an optimized 5΄ selective workflow where all the cell indexing is done prior to fragmentation. With our protocol, cell indexing can be performed in the Fluidigm C1 microfluidic device, resulting in a significant reduction of cost and labor. We also designed optimized unique molecular identifiers that show less sequence bias and vulnerability towards sequencing errors resulting in an improved accuracy of molecule counting. We provide comprehensive experimental workflows for Illumina and Ion Proton sequencers that allow single cell sequencing in a cost range comparable to qPCR assays.


Assuntos
Perfilação da Expressão Gênica/métodos , Análise de Sequência de RNA/métodos , Células Cultivadas , DNA Complementar , Perfilação da Expressão Gênica/economia , Células HEK293 , Humanos , Análise de Sequência de RNA/economia , Análise de Célula Única
7.
F1000Res ; 5: 1309, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27347386

RESUMO

The ribosome profiling technique (Ribo-seq) allows the selective sequencing of translated RNA regions. Recently, the analysis of genomic sequences associated to Ribo-seq reads has been widely employed to assess their coding potential. These analyses led to the identification of differentially translated transcripts under different experimental conditions, and/or ribosome pausing on codon motifs. In the context of the ever-growing need for tools analyzing Ribo-seq reads, we have developed 'RiboProfiling', a new Bioconductor open-source package. 'RiboProfiling' provides a full pipeline to cover all key steps for the analysis of ribosome footprints. This pipeline has been implemented in a single R workflow. The package takes an alignment (BAM) file as input and performs ribosome footprint quantification at a transcript level. It also identifies footprint accumulation on particular amino acids or multi amino-acids motifs. Report summary graphs and data quantification are generated automatically. The package facilitates quality assessment and quantification of Ribo-seq experiments. Its implementation in Bioconductor enables the modeling and statistical analysis of its output through the vast choice of packages available in R. This article illustrates how to identify codon-motifs accumulating ribosome footprints, based on data from Escherichia coli.

8.
BMC Genomics ; 17: 52, 2016 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-26764022

RESUMO

BACKGROUND: Open reading frames are common in long noncoding RNAs (lncRNAs) and 5'UTRs of protein coding transcripts (uORFs). The question of whether those ORFs are translated was recently addressed by several groups using ribosome profiling. Most of those studies concluded that certain lncRNAs and uORFs are translated, essentially based on computational analysis of ribosome footprints. However, major discrepancies remain on the scope of translation and the translational status of individual ORFs. In consequence, further criteria are required to reliably identify translated ORFs from ribosome profiling data. RESULTS: We examined the effect of the translation inhibitors pateamine A, harringtonine and puromycin on murine ES cell ribosome footprints. We found that pateamine A, a drug that targets eIF4A, allows a far more accurate identification of translated sequences than previously used drugs and computational scoring schemes. Our data show that at least one third but less than two thirds of ES cell lncRNAs are translated. We also identified translated uORFs in hundreds of annotated coding transcripts including key pluripotency transcripts, such as dicer, lin28, trim71, and ctcf. CONCLUSION: Pateamine A inhibition data clearly increase the precision of the detection of translated ORFs in ribosome profiling experiments. Our data show that translation of lncRNAs and uORFs in murine ES cells is rather common although less pervasive than previously suggested. The observation of translated uORFs in several key pluripotency transcripts suggests that translational regulation by uORFs might be part of the network that defines mammalian stem cell identity.


Assuntos
Células-Tronco Embrionárias Murinas , Biossíntese de Proteínas , RNA Longo não Codificante/genética , Ribossomos/genética , Regiões 5' não Traduzidas/genética , Animais , Compostos de Epóxi/administração & dosagem , Regulação da Expressão Gênica/genética , Macrolídeos/administração & dosagem , Camundongos , Fases de Leitura Aberta/genética , Ribossomos/efeitos dos fármacos , Tiazóis/administração & dosagem
9.
Genome Biol ; 12(7): R64, 2011 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-21767385

RESUMO

BACKGROUND: In severe obesity, as well as in normal development, the growth of adipose tissue is the result of an increase in adipocyte size and numbers, which is underlain by the stimulation of adipogenic differentiation of precursor cells. A better knowledge of the pathways that regulate adipogenesis is therefore essential for an improved understanding of adipose tissue expansion. As microRNAs (miRNAs) have a critical role in many differentiation processes, our study aimed to identify the role of miRNA-mediated gene silencing in the regulation of adipogenic differentiation. RESULTS: We used deep sequencing to identify small RNAs that are differentially expressed during adipogenesis of adipose tissue-derived stem cells. This approach revealed the un-annotated miR-642a-3p as a highly adipocyte-specific miRNA. We then focused our study on the miR-30 family, which was also up-regulated during adipogenic differentiation and for which the role in adipogenesis had not yet been elucidated. Inhibition of the miR-30 family blocked adipogenesis, whilst over-expression of miR-30a and miR-30d stimulated this process. We additionally showed that both miR-30a and miR-30d target the transcription factor RUNX2, and stimulate adipogenesis via the modulation of this major regulator of osteogenesis. CONCLUSIONS: Overall, our data suggest that the miR-30 family plays a central role in adipocyte development. Moreover, as adipose tissue-derived stem cells can differentiate into either adipocytes or osteoblasts, the down-regulation of the osteogenesis regulator RUNX2 represents a plausible mechanism by which miR-30 miRNAs may contribute to adipogenic differentiation of adipose tissue-derived stem cells.


Assuntos
Adipócitos/metabolismo , Adipogenia/genética , MicroRNAs/metabolismo , Especificidade de Órgãos/genética , Diferenciação Celular/genética , Subunidade alfa 1 de Fator de Ligação ao Core/antagonistas & inibidores , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Regulação da Expressão Gênica no Desenvolvimento , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , MicroRNAs/química , Osteogênese/genética , Análise de Sequência de RNA , Regulação para Cima/genética
10.
Nat Cell Biol ; 13(6): 693-9, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21602795

RESUMO

Multiciliated cells lining the surface of some vertebrate epithelia are essential for various physiological processes, such as airway cleansing. However, the mechanisms governing motile cilia biosynthesis remain poorly elucidated. We identify miR-449 microRNAs as evolutionarily conserved key regulators of vertebrate multiciliogenesis. In human airway epithelium and Xenopus laevis embryonic epidermis, miR-449 microRNAs strongly accumulated in multiciliated cells. In both models, we show that miR-449 microRNAs promote centriole multiplication and multiciliogenesis by directly repressing the Delta/Notch pathway. We established Notch1 and its ligand Delta-like 1(DLL1) as miR-449 bona fide targets. Human DLL1 and NOTCH1 protein levels were lower in multiciliated cells than in surrounding cells, decreased after miR-449 overexpression and increased after miR-449 inhibition. In frog, miR-449 silencing led to increased Dll1 expression. Consistently, overexpression of Dll1 mRNA lacking miR-449 target sites repressed multiciliogenesis, whereas both Dll1 and Notch1 knockdown rescued multiciliogenesis in miR-449-deficient cells. Antisense-mediated protection of miR-449-binding sites of endogenous human Notch1 or frog Dll1 strongly repressed multiciliogenesis. Our results unravel a conserved mechanism whereby Notch signalling must undergo miR-449-mediated inhibition to permit differentiation of ciliated cell progenitors.


Assuntos
Cílios/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas de Membrana/metabolismo , MicroRNAs/metabolismo , Receptor Notch1/metabolismo , Transdução de Sinais , Proteínas de Xenopus/metabolismo , Animais , Proteínas de Ligação ao Cálcio , Sobrevivência Celular , Células Cultivadas , Sequência Conservada , Epiderme/metabolismo , Feminino , Citometria de Fluxo , Técnicas de Silenciamento de Genes , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Pólipos Nasais/fisiopatologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Xenopus/embriologia , Proteínas de Xenopus/genética
11.
Methods Mol Biol ; 741: 171-91, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21594785

RESUMO

Extensive sequencing efforts, combined with ad hoc bioinformatics developments, have now led to the identification of 1222 distinct miRNAs in human (derived from 1368 distinct genomic loci) and of many miRNAs in other multicellular organisms. The present chapter is aimed at describing a general experimental strategy to identify specific miRNA expression profiles and to highlight the functional networks operating between them and their mRNA targets, including several miRNAs deregulated in cystic fibrosis and during differentiation of airway epithelial cells.


Assuntos
Técnicas Genéticas , MicroRNAs/genética , Mucosa Respiratória/metabolismo , Animais , Biologia Computacional , Perfilação da Expressão Gênica , Genes Reporter/genética , Humanos , Hibridização In Situ , Luciferases/genética , Análise de Sequência com Séries de Oligonucleotídeos , Plasmídeos/genética , Controle de Qualidade , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Mucosa Respiratória/citologia , Mucosa Respiratória/patologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transfecção
12.
Cell Res ; 21(7): 1028-38, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21423270

RESUMO

The study of the proteins that bind to telomeric DNA in mammals has provided a deep understanding of the mechanisms involved in chromosome-end protection. However, very little is known on the binding of these proteins to nontelomeric DNA sequences. The TTAGGG DNA repeat proteins 1 and 2 (TRF1 and TRF2) bind to mammalian telomeres as part of the shelterin complex and are essential for maintaining chromosome end stability. In this study, we combined chromatin immunoprecipitation with high-throughput sequencing to map at high sensitivity and resolution the human chromosomal sites to which TRF1 and TRF2 bind. While most of the identified sequences correspond to telomeric regions, we showed that these two proteins also bind to extratelomeric sites. The vast majority of these extratelomeric sites contains interstitial telomeric sequences (or ITSs). However, we also identified non-ITS sites, which correspond to centromeric and pericentromeric satellite DNA. Interestingly, the TRF-binding sites are often located in the proximity of genes or within introns. We propose that TRF1 and TRF2 couple the functional state of telomeres to the long-range organization of chromosomes and gene regulation networks by binding to extratelomeric sequences.


Assuntos
DNA/metabolismo , Telômero , Proteína 1 de Ligação a Repetições Teloméricas/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo , Sequência de Bases , Sítios de Ligação , Imunoprecipitação da Cromatina , DNA/química , Genes , Humanos , Ligação Proteica
13.
Pain ; 134(3): 245-253, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17531389

RESUMO

Gastric acid challenge of the rat and mouse stomach is signalled to the brainstem as revealed by expression of c-Fos. The molecular sensors relevant to the detection of gastric mucosal acidosis are not known. Since the acid-sensing ion channels ASIC2 and ASIC3 are expressed by primary afferent neurons, we examined whether knockout of the ASIC2 or ASIC3 gene modifies afferent signalling of a gastric acid insult in the normal and inflamed stomach. The stomach of conscious mice (C57BL/6) was challenged with intragastric HCl; two hours later the activation of neurons in the nucleus tractus solitarii (NTS) of the brainstem was visualized by c-Fos immunocytochemistry. Mild gastritis was induced by addition of iodoacetamide (0.1%) to the drinking water for 7 days. Exposure of the gastric mucosa to HCl (0.25M) caused a 3-fold increase in the number of c-Fos-positive neurons in the NTS. This afferent input to the NTS remained unchanged by ASIC3 knockout, whereas ASIC2 knockout augmented the c-Fos response to gastric HCl challenge by 33% (P<0.01). Pretreatment of wild-type mice with iodoacetamide induced mild gastritis, as revealed by increased myeloperoxidase activity, and enhanced the number of NTS neurons responding to gastric HCl challenge by 41% (P<0.01). This gastric acid hyperresponsiveness was absent in ASIC3 knockout mice but fully preserved in ASIC2 knockout mice. The current data indicate that ASIC3 plays a major role in the acid hyperresponsiveness associated with experimental gastritis. In contrast, ASIC2 appears to dampen acid-evoked input from the stomach to the NTS.


Assuntos
Vias Aferentes/fisiopatologia , Tronco Encefálico/metabolismo , Mucosa Gástrica/metabolismo , Gastrite/metabolismo , Hipersensibilidade/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Canais de Sódio/metabolismo , Canais Iônicos Sensíveis a Ácido , Animais , Tronco Encefálico/efeitos dos fármacos , Ácido Gástrico/metabolismo , Gastrite/induzido quimicamente , Deleção de Genes , Ácido Clorídrico , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Canais de Sódio/genética , Estômago/efeitos dos fármacos
14.
J Physiol ; 558(Pt 2): 659-69, 2004 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-15169849

RESUMO

Mechanosensitive cation channels are thought to be crucial for different aspects of mechanoperception, such as hearing and touch sensation. In the nematode C. elegans, the degenerins MEC-4 and MEC-10 are involved in mechanosensation and were proposed to form mechanosensitive cation channels. Mammalian degenerin homologues, the H(+)-gated ASIC channels, are expressed in sensory neurones and are therefore interesting candidates for mammalian mechanosensors. We investigated the effect of an ASIC2 gene knockout in mice on hearing and on cutaneous mechanosensation and visceral mechanonociception. However, our data do not support a role of ASIC2 in those facets of mechanoperception.


Assuntos
Audição/fisiologia , Mecanorreceptores/fisiologia , Proteínas de Membrana/genética , Proteínas de Membrana/fisiologia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/fisiologia , Nociceptores/fisiologia , Canais de Sódio/genética , Canais de Sódio/fisiologia , Canais Iônicos Sensíveis a Ácido , Animais , Limiar Auditivo , Deleção de Genes , Proteínas de Membrana/química , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/química , Oócitos/fisiologia , Técnicas de Patch-Clamp , Estrutura Terciária de Proteína , Pele/inervação , Canais de Sódio/química , Fibras Aferentes Viscerais/fisiologia , Xenopus laevis
15.
J Neurosci ; 24(5): 1005-12, 2004 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-14762118

RESUMO

pH variations in the retina are thought to be involved in the fine-tuning of visual perception. We show that both photoreceptors and neurons of the mouse retina express the H+-gated cation channel subunits acid-sensing ion channel 2a (ASIC2a) and ASIC2b. Inactivation of the ASIC2 gene in mice leads to an increase in the rod electroretinogram a- and b-waves and thus to an enhanced gain of visual transduction. ASIC2 knock-out mice are also more sensitive to light-induced retinal degeneration. We suggest that ASIC2 is a negative modulator of rod phototransduction, and that functional ASIC2 channels are beneficial for the maintenance of retinal integrity.


Assuntos
Canais Iônicos/metabolismo , Luz/efeitos adversos , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Retina/fisiologia , Degeneração Retiniana/metabolismo , Degeneração Retiniana/prevenção & controle , Canais de Sódio/metabolismo , Canais Iônicos Sensíveis a Ácido , Animais , Apoptose/genética , Western Blotting , Fragmentação do DNA/genética , Canais de Sódio Degenerina , Eletrorretinografia/efeitos da radiação , Canais Epiteliais de Sódio , Hibridização In Situ , Canais Iônicos/genética , Potenciais da Membrana/genética , Potenciais da Membrana/fisiologia , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Células Fotorreceptoras/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Retina/patologia , Retina/efeitos da radiação , Degeneração Retiniana/etiologia , Degeneração Retiniana/patologia , Canais de Sódio/genética
16.
J Physiol ; 539(Pt 2): 485-94, 2002 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-11882680

RESUMO

The expression of mRNA for acid sensing ion channels (ASIC) subunits ASIC1a, ASIC2a and ASIC2b has been reported in hippocampal neurons, but the presence of functional hippocampal ASIC channels was never assessed. We report here the first characterization of ASIC-like currents in rat hippocampal neurons in primary culture. An extracellular pH drop induces a transient Na(+) current followed by a sustained non-selective cation current. This current is highly sensitive to pH with an activation threshold around pH 6.9 and a pH(0.5) of 6.2. About half of the total peak current is inhibited by the spider toxin PcTX1, which is specific for homomeric ASIC1a channels. The remaining PcTX1-resistant ASIC-like current is increased by 300 microM Zn(2+) and, whereas not fully activated at pH 5, it shows a pH(0.5) of 6.0 between pH 7.4 and 5. We have previously shown that Zn(2+) is a co-activator of ASIC2a-containing channels. Thus, the hippocampal transient ASIC-like current appears to be generated by a mixture of homomeric ASIC1a channels and ASIC2a-containing channels, probably heteromeric ASIC1a+2a channels. The sustained non-selective current suggests the involvement of ASIC2b-containing heteromeric channels. Activation of the hippocampal ASIC-like current by a pH drop to 6.9 or 6.6 induces a transient depolarization which itself triggers an initial action potential (AP) followed by a sustained depolarization and trains of APs. Zn(2+) increases the acid sensitivity of ASIC channels, and consequently neuronal excitability. It is probably an important co-activator of ASIC channels in the central nervous system.


Assuntos
Hipocampo/fisiologia , Proteínas de Membrana , Proteínas do Tecido Nervoso , Neurônios/fisiologia , Canais de Sódio/fisiologia , Canais Iônicos Sensíveis a Ácido , Animais , Biotransformação/efeitos dos fármacos , Células Cultivadas , Eletrofisiologia , Hipocampo/citologia , Concentração de Íons de Hidrogênio , Técnicas de Patch-Clamp , Prótons , Ratos , Agonistas de Canais de Sódio , Zinco/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA