Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Mol Endocrinol ; 73(1)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38639976

RESUMO

The prostanoid G protein-coupled receptor (GPCR) EP2 is widely expressed and implicated in endometriosis, osteoporosis, obesity, pre-term labour and cancer. Internalisation and intracellular trafficking are critical for shaping GPCR activity, yet little is known regarding the spatial programming of EP2 signalling and whether this can be exploited pharmacologically. Using three EP2-selective ligands that favour activation of different EP2 pathways, we show that EP2 undergoes limited agonist-driven internalisation but is constitutively internalised via dynamin-dependent, ß-arrestin-independent pathways. EP2 was constitutively trafficked to early and very early endosomes (VEE), which was not altered by ligand activation. APPL1, a key adaptor and regulatory protein of the VEE, did not impact EP2 agonist-mediated cAMP. Internalisation was required for ~70% of the acute butaprost- and AH13205-mediated cAMP signalling, yet PGN9856i, a Gαs-biased agonist, was less dependent on receptor internalisation for its cAMP signalling, particularly in human term pregnant myometrial cells that endogenously express EP2. Inhibition of EP2 internalisation partially reduced calcium signalling activated by butaprost or AH13205 and had no effect on PGE2 secretion. This indicates an agonist-dependent differential spatial requirement for Gαs and Gαq/11 signalling and a role for plasma membrane-initiated Gαq/11-Ca2+-mediated PGE2 secretion. These findings reveal a key role for EP2 constitutive internalisation in its signalling and potential spatial bias in mediating its downstream functions. This, in turn, could highlight important considerations for future selective targeting of EP2 signalling pathways.


Assuntos
Receptores de Prostaglandina E Subtipo EP2 , Transdução de Sinais , Humanos , Receptores de Prostaglandina E Subtipo EP2/metabolismo , Feminino , Gravidez , AMP Cíclico/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Endossomos/metabolismo , Transporte Proteico , Miométrio/metabolismo , Alprostadil/análogos & derivados , Alprostadil/farmacologia , Alprostadil/metabolismo , Células HEK293 , Animais
2.
Cell Rep ; 40(10): 111318, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36070698

RESUMO

Current strategies to manage preterm labor center around inhibition of uterine myometrial contractions, yet do not improve neonatal outcomes as they do not address activation of inflammation. Here, we identify that during human labor, activated oxytocin receptor (OTR) reprograms the prostaglandin E2 receptor, EP2, in the pregnant myometrium to suppress relaxatory/Gαs-cAMP signaling and promote pro-labor/inflammatory responses via altered coupling of EP2 from Gαq/11 to Gαi/o. The ability of EP2 to signal via Gαi/o is recapitulated with in vitro OT and only following OTR activation, suggesting direct EP2-OTR crosstalk. Super-resolution imaging with computational modeling reveals OT-dependent reorganization of EP2-OTR complexes to favor conformations for Gαi over Gαs activation. A selective EP2 ligand, PGN9856i, activates the relaxatory/Gαs-cAMP pathway but not the pro-labor/inflammatory responses in term-pregnant myometrium, even following OT. Our study reveals a mechanism, and provides a potential therapeutic solution, whereby EP2-OTR functional associations could be exploited to delay preterm labor.


Assuntos
Trabalho de Parto , Trabalho de Parto Prematuro , Feminino , Humanos , Recém-Nascido , Trabalho de Parto/metabolismo , Miométrio/metabolismo , Gravidez , Receptores de Ocitocina , Contração Uterina/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA