Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-35682188

RESUMO

Recent studies have succeeded in relating emissions of various volatile organic compounds to material mass diffusion transfer using detailed empirical characteristics of each of the individual emitting materials. While significant, the resulting models are often scenario specific and/or require a host of individual component parameters to estimate emission rates. This study developed an approach to estimate aggregated emissions rates based on a wide number of field measurements. We used a multi-parameter regression model based on previous mass transfer models to predict formaldehyde emission rate for a whole dwelling using field-measured, time-resolved formaldehyde concentrations, air exchange rates, and indoor environmental parameters in 63 California single-family houses built between 2011 and 2017. The resulting model provides time-varying formaldehyde emission rates, normalized by floor area, for each study home, assuming a well-mixed mass balance transport model of the home, and a well-mixed layer transport model of indoor surfaces. The surface layer model asserts an equilibrium concentration within the surface layer of the emitted materials that is a function of temperature and RH; the dwelling ventilation rate serves as a surrogate for indoor concentration. We also developed a more generic emission model that is suitable for broad prediction of emission for a population of buildings. This model is also based on measurements aggregated from 27 homes from the same study. We showed that errors in predicting household formaldehyde concentrations using this approach were substantially less than those using a traditional constant emission rate model, despite requiring less unique building information.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Formaldeído/análise , Temperatura , Compostos Orgânicos Voláteis/análise
2.
Indoor Air ; 31(3): 717-729, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33070378

RESUMO

This paper presents pollutant concentrations and performance data for code-required mechanical ventilation equipment in 23 low-income apartments at 4 properties constructed or renovated 2013-2017. All apartments had natural gas cooking burners. Occupants pledged to not use windows for ventilation during the study but several did. Measured airflows of range hoods and bathroom exhaust fans were lower than product specifications. Only eight apartments operationally met all ventilation code requirements. Pollutants measured over one week in each apartment included time-resolved fine particulate matter (PM2.5 ), nitrogen dioxide (NO2 ), formaldehyde and carbon dioxide (CO2 ) and time-integrated formaldehyde, NO2 and nitrogen oxides (NOX ). Compared to a recent study of California houses with code-compliant ventilation, apartments were smaller, had fewer occupants, higher densities, and higher mechanical ventilation rates. Mean PM2.5 , formaldehyde, NO2 , and CO2 were 7.7 µg/m3 , 14.1, 18.8, and 741 ppm in apartments; these are 4% lower, 25% lower, 165% higher, and 18% higher compared to houses with similar cooking frequency. Four apartments had weekly PM2.5 above the California annual outdoor standard of 12 µg/m3 and also discrete days above the World Health Organization 24-hour guideline of 25 µg/m3 . Two apartments had weekly NO2 above the California annual outdoor standard of 30 ppb.


Assuntos
Poluição do Ar em Ambientes Fechados/estatística & dados numéricos , Gás Natural , Material Particulado , Ventilação , Poluentes Atmosféricos , California , Culinária , Monitoramento Ambiental , Formaldeído , Dióxido de Nitrogênio , Pobreza , Respiração Artificial , Emissões de Veículos
3.
Artigo em Inglês | MEDLINE | ID: mdl-33260667

RESUMO

Venting range hoods can control indoor air pollutants emitted during residential cooktop and oven cooking. To quantify their potential benefits, it is important to know how frequently and under what conditions range hoods are operated during cooking. We analyzed data from 54 single family houses and 17 low-income apartments in California in which cooking activities, range hood use, and fine particulate matter (PM2.5) were monitored for one week per home. Range hoods were used for 36% of cooking events in houses and 28% in apartments. The frequency of hood use increased with cooking frequency across homes. In both houses and apartments, the likelihood of hood use during a cooking event increased with the duration of cooktop burner use, but not with the duration of oven use. Actual hood use rates were higher in the homes of participants who self-reported more frequent use in a pre-study survey, but actual use was far lower than self-reported frequency. Residents in single family houses used range hoods more often when cooking caused a discernible increase in PM2.5. In apartments, residents used their range hood more often only when high concentrations of PM2.5 were generated during cooking.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Culinária , Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , California , Monitoramento Ambiental , Humanos , Material Particulado/análise , Ventilação
4.
Indoor Air ; 30(5): 885-899, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32304607

RESUMO

Data were collected in 70 detached houses built in 2011-2017 in compliance with the mechanical ventilation requirements of California's building energy efficiency standards. Each home was monitored for a 1-week period with windows closed and the central mechanical ventilation system operating. Pollutant measurements included time-resolved fine particulate matter (PM2.5 ) indoors and outdoors and formaldehyde and carbon dioxide (CO2 ) indoors. Time-integrated measurements were made for formaldehyde, NO2 , and nitrogen oxides (NOX ) indoors and outdoors. Operation of the cooktop, range hood, and other exhaust fans was continuously recorded during the monitoring period. Onetime diagnostic measurements included mechanical airflows and envelope and duct system air leakage. All homes met or were very close to meeting the ventilation requirements. On average, the dwelling unit ventilation fan moved 50% more airflow than the minimum requirement. Pollutant concentrations were similar to or lower than those reported in a 2006-2007 study of California new homes built in 2002-2005. Mean and median indoor concentrations were lower by 44% and 38% for formaldehyde and 44% and 54% for PM2.5 . Ventilation fans were operating in only 26% of homes when first visited, and the control switches in many homes did not have informative labels as required by building standards.


Assuntos
Poluição do Ar em Ambientes Fechados/estatística & dados numéricos , Monitoramento Ambiental , Habitação/estatística & dados numéricos , Material Particulado , Ventilação , California , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA