Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Infect Control Hosp Epidemiol ; : 1-7, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38351597

RESUMO

OBJECTIVE: The 2014 US National Strategy for Combating Antibiotic-Resistant Bacteria (CARB) aimed to reduce inappropriate inpatient antibiotic use by 20% for monitored conditions, such as community-acquired pneumonia (CAP), by 2020. We evaluated annual trends in length of therapy (LOT) in adults hospitalized with uncomplicated CAP from 2013 through 2020. METHODS: We conducted a retrospective cohort study among adults with a primary diagnosis of bacterial or unspecified pneumonia using International Classification of Diseases Ninth and Tenth Revision codes in MarketScan and the Centers for Medicare & Medicaid Services databases. We included patients with length of stay (LOS) of 2-10 days, discharged home with self-care, and not rehospitalized in the 3 days following discharge. We estimated inpatient LOT based on LOS from the PINC AI Healthcare Database. The total LOT was calculated by summing estimated inpatient LOT and actual postdischarge LOT. We examined trends from 2013 to 2020 in patients with total LOT >7 days, which was considered an indicator of likely excessive LOT. RESULTS: There were 44,976 and 400,928 uncomplicated CAP hospitalizations among patients aged 18-64 years and ≥65 years, respectively. From 2013 to 2020, the proportion of patients with total LOT >7 days decreased by 25% (68% to 51%) among patients aged 18-64 years and by 27% (68%-50%) among patients aged ≥65 years. CONCLUSIONS: Although likely excessive LOT for uncomplicated CAP patients decreased since 2013, the proportion of patients treated with LOT >7 days still exceeded 50% in 2020. Antibiotic stewardship programs should continue to pursue interventions to reduce likely excessive LOT for common infections.

2.
J Am Chem Soc ; 143(34): 13835-13844, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34423974

RESUMO

The diversity of the reactions catalyzed by radical S-adenosyl-l-methionine (SAM) enzymes is achieved at least in part through the variety of mechanisms to quench their radical intermediates. In the SPASM-twitch family, the largest family of radical SAM enzymes, the radical quenching step is thought to involve an electron transfer to or from an auxiliary 4Fe-4S cluster in or adjacent to the active site. However, experimental demonstration of such functions remains limited. As a representative member of this family, MoaA has one radical SAM cluster ([4Fe-4S]RS) and one auxiliary cluster ([4Fe-4S]AUX), and catalyzes a unique 3',8-cyclization of GTP into 3',8-cyclo-7,8-dihydro-GTP (3',8-cH2GTP) in the molybdenum cofactor (Moco) biosynthesis. Here, we report a mechanistic investigation of the radical quenching step in MoaA, a chemically challenging reduction of 3',8-cyclo-GTP-N7 aminyl radical. We first determined the reduction potentials of [4Fe-4S]RS and [4Fe-4S]AUX as -510 mV and -455 mV, respectively, using a combination of protein film voltammogram (PFV) and electron paramagnetic resonance (EPR) spectroscopy. Subsequent Q-band EPR characterization of 5'-deoxyadenosine C4' radical (5'-dA-C4'•) trapped in the active site revealed isotropic exchange interaction (∼260 MHz) between 5'-dA-C4'• and [4Fe-4S]AUX1+, suggesting that [4Fe-4S]AUX is in the reduced (1+) state during the catalysis. Together with density functional theory (DFT) calculation, we propose that the aminyl radical reduction proceeds through a proton-coupled electron transfer (PCET), where [4Fe-4S]AUX serves as an electron donor and R17 residue acts as a proton donor. These results provide detailed mechanistic insights into the radical quenching step of radical SAM enzyme catalysis.


Assuntos
Radicais Livres/química , Guanosina Trifosfato/metabolismo , Hidrolases/metabolismo , S-Adenosilmetionina/metabolismo , Domínio Catalítico , Teoria da Densidade Funcional , Espectroscopia de Ressonância de Spin Eletrônica , Transporte de Elétrons , Guanosina Trifosfato/química , Hidrolases/genética , Simulação de Dinâmica Molecular , Mutagênese , S-Adenosilmetionina/química , Staphylococcus aureus/enzimologia
3.
J Am Chem Soc ; 142(29): 12620-12634, 2020 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-32643933

RESUMO

Understanding the relationship between the metallocofactor and its protein environment is the key to uncovering the mechanism of metalloenzymes. PqqE, a radical S-adenosylmethionine enzyme in pyrroloquinoline quinone (PQQ) biosynthesis, contains three iron-sulfur cluster binding sites. Two auxiliary iron-sulfur cluster binding sites, designated as AuxI and AuxII, use distinctive ligands compared to other proteins in the family while their functions remain unclear. Here, we investigate the electronic properties of these iron-sulfur clusters and compare the catalytic efficiency of wild-type (WT) Methylorubrum extorquens AM1 PqqE to a range of mutated constructs. Using native mass spectrometry, protein film electrochemistry, and electron paramagnetic resonance spectroscopy, we confirm the previously proposed incorporation of a mixture of [2Fe-2S] and [4Fe-4S] clusters at the AuxI site and are able to assign redox potentials to each of the three iron-sulfur clusters. Significantly, a conservative mutation at AuxI, C268H, shown to selectively incorporate a [4Fe-4S] cluster, catalyzes an enhancement of uncoupled S-adenosylmethionine cleavage relative to WT, together with the elimination of detectable peptide cross-linked product. While a [4Fe-4S] cluster can be tolerated at the AuxI site, the aggregate findings suggest a functional [2Fe-2S] configuration within the AuxI site. PqqE variants with nondestructive ligand replacements at AuxII also show that the reduction potential at this site can be manipulated by changing the electronegativity of the unique aspartate ligand. A number of novel mechanistic features are proposed based on the kinetic and spectroscopic data. Additionally, bioinformatic analyses suggest that the unique ligand environment of PqqE may be relevant to its role in PQQ biosynthesis within an oxygen-dependent biosynthetic pathway.


Assuntos
Proteínas de Bactérias/metabolismo , Endopeptidases/metabolismo , Ferro/metabolismo , Methylobacterium extorquens/química , Enxofre/metabolismo , Proteínas de Bactérias/química , Biocatálise , Cristalografia por Raios X , Endopeptidases/química , Ferro/química , Methylobacterium extorquens/metabolismo , Modelos Moleculares , Estrutura Molecular , Enxofre/química
4.
J Biol Inorg Chem ; 24(6): 889-898, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31463592

RESUMO

The formate dehydrogenase enzyme from Cupriavidus necator (FdsABG) carries out the two-electron oxidation of formate to CO2, but is also capable of reducing CO2 back to formate, a potential biofuel. FdsABG is a heterotrimeric enzyme that performs this transformation using nine redox-active cofactors: a bis(molybdopterin guanine dinucleotide) (bis-MGD) at the active site coupled to seven iron-sulfur clusters, and one equivalent of flavin mononucleotide (FMN). To better understand the pathway of electron flow in FdsABG, the reduction potentials of the various cofactors were examined through direct electrochemistry. Given the redundancy of cofactors, a truncated form of the FdsA subunit was developed that possesses only the bis-MGD active site and a singular [4Fe-4S] cluster. Electrochemical characterization of FdsABG compared to truncated FdsA shows that the measured reduction potentials are remarkably similar despite the truncation with two observable features at - 265 mV and - 455 mV vs SHE, indicating that the voltammetry of the truncated enzyme is representative of the reduction potentials of the intact heterotrimer. By producing truncated FdsA without the necessary maturation factors required for bis-MGD insertion, a form of the truncated FdsA that possesses only the [4Fe-4S] was produced, which gives a single voltammetric feature at - 525 mV, allowing the contributions of the molybdenum cofactor to be associated with the observed feature at - 265 mV. This method allowed for the deconvolution of reduction potentials for an enzyme with highly complex cofactor content to know more about the thermodynamic landscape of catalysis.


Assuntos
Cupriavidus necator/enzimologia , Cupriavidus necator/metabolismo , Formiato Desidrogenases/metabolismo , Catálise , Coenzimas/metabolismo , Cupriavidus necator/genética , Mononucleotídeo de Flavina/metabolismo , Formiato Desidrogenases/química , Formiato Desidrogenases/genética , Proteínas Ferro-Enxofre/química , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , Metaloproteínas/metabolismo , Cofatores de Molibdênio , Oxirredução , Pteridinas/metabolismo
5.
Biochemistry ; 58(7): 940-950, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30628436

RESUMO

Mycofactocin is a putative redox cofactor and is classified as a ribosomally synthesized and post-translationally modified peptide (RiPP). Some RiPP natural products, including mycofactocin, rely on a radical S-adenosylmethionine (RS, SAM) protein to modify the precursor peptide. Mycofactocin maturase, MftC, is a unique RS protein that catalyzes the oxidative decarboxylation and C-C bond formation on the precursor peptide MftA. However, the number, chemical nature, and catalytic roles for the MftC [Fe-S] clusters remain unknown. Here, we report that MftC binds a RS [4Fe-4S] cluster and two auxiliary [4Fe-4S] clusters that are required for MftA modification. Furthermore, electron paramagnetic resonance spectra of MftC suggest that SAM and MftA affect the environments of the RS and Aux I cluster, whereas the Aux II cluster is unaffected by the substrates. Lastly, reduction potential assignments of individual [4Fe-4S] clusters by protein film voltammetry show that their potentials are within 100 mV of each other.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas Ferro-Enxofre/química , Proteínas Ferro-Enxofre/metabolismo , Proteínas de Bactérias/genética , Catálise , Domínio Catalítico , Cisteína/química , Técnicas Eletroquímicas , Espectroscopia de Ressonância de Spin Eletrônica , Proteínas Ferro-Enxofre/genética , Mycobacterium ulcerans/química , Oxirredução , S-Adenosilmetionina/metabolismo , Espectroscopia de Mossbauer
6.
Biochemistry ; 57(42): 6050-6053, 2018 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-30272955

RESUMO

Enzymes in the S-adenosyl-l-methionine (AdoMet) radical enzyme superfamily are metalloenzymes that catalyze a wide variety of complex radical-mediated transformations with the aid of a [4Fe-4S] cluster, which is required for activation of AdoMet to generate the 5'-deoxyadenosyl radical to initiate the catalytic cycle. In addition to this cluster, some enzymes share an additional domain, the SPASM domain, that houses auxiliary FeS clusters whose functional significance is not clearly understood. The AdoMet radical enzyme Tte1186, which catalyzes a thioether cross-link in a cysteine rich peptide (SCIFF), has two auxiliary [4Fe-4S] clusters within a SPASM domain that are required for enzymatic activity but not for the generation of the 5'-deoxyadenosyl radical intermediate. Here we demonstrate the ability to measure independently the midpoint potentials of each of the three [4Fe-4S] clusters by employing Tte1186 variants for which only the first, second, or AdoMet binding cluster is bound. This allows, for the first time, assignment of reduction potentials for all clusters in an AdoMet radical enzyme with a SPASM domain. Our results show that the clusters have midpoint potentials that are within 100 mV of each other, suggesting that their electrochemical properties are not greatly influenced by the presence of the nearby clusters.


Assuntos
Proteínas de Bactérias/química , Firmicutes/enzimologia , Proteínas Ferro-Enxofre/química , S-Adenosilmetionina/química , Motivos de Aminoácidos , Domínios Proteicos
7.
Methods Enzymol ; 606: 319-339, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30097097

RESUMO

While protein film electrochemistry (PFE) has proven to be an effective tool in the interrogation of redox cofactors and assessing the electrocatalytic activity of many different enzymes, recently it has been proven to be useful for the study of the redox potentials of the cofactors of AdoMet radical enzymes (AREs). In this chapter, we review the challenges and opportunities of examining the redox cofactors of AREs in a high level of detail, particularly for the deconvolution of redox potentials of multiple cofactors. We comment on how to best assess the electroactive nature of any given ARE, and we see that when applied well, PFE allows for not only determining redox potentials, but also determining proton-coupling and ligand-binding phenomena in the ARE superfamily.


Assuntos
Coenzimas/metabolismo , Ensaios Enzimáticos/métodos , Enzimas/metabolismo , S-Adenosilmetionina/metabolismo , Coenzimas/química , Eletroquímica , Radicais Livres/metabolismo , Ligantes , Modelos Moleculares , Oxirredução , Ligação Proteica
8.
J Clin Microbiol ; 56(3)2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29305540

RESUMO

The performance of a disk diffusion test using broth from positive blood cultures as inoculum (direct disk diffusion [dDD]) was evaluated for a collection of 20 challenge isolates of Enterobacteriaceae, Acinetobacter baumannii, and Pseudomonas aeruginosa Isolates seeded into human blood were inoculated into Bactec Plus Aerobic/F, VersaTREK Redox 1, and BacT/Alert FA Plus bottles and incubated in the respective automated blood culture systems. Disk diffusion results were compared to reference disk diffusion results. Categorical agreement (CA) values for dDD, after removal of random errors due to natural MIC variation, were 87.8%, 88.4%, and 92.2% for the BacT/Alert, Bactec, and VersaTREK systems, respectively. No very major errors (VME) were observed, and major error (ME) rates were 3.0%, 2.3%, and 1.7%, respectively. Incubation of the dDD test samples for 6 h compared to incubation for 16 to 18 h resulted in 19.9% of tests having too light of growth to allow reading of zones of inhibition. Among the evaluable dDD tests, CA values were 58.9%, 76.6%, and 73.2% for the isolates seeded into the BacT/Alert, Bactec, and VersaTREK systems, respectively. VME rates for isolates seeded into these systems were 2.2%, 1.8%, and 3.0%, respectively, and ME rates were 25.4%, 6.1%, and 2.8%, respectively, at the 6-h reading. The best performance of dDD was found for blood cultures with bacterial concentrations in the range of 7.6 × 107 to 5.0 × 108 CFU/ml; CA values ranged from 94.7 to 96.2% for these concentrations after 18 h of incubation and from 76.9 to 84.1% after 6 h of incubation. These preliminary data demonstrate the potential accuracy of dDD testing by the clinical laboratory.


Assuntos
Técnicas Bacteriológicas/normas , Sangue/microbiologia , Técnicas de Laboratório Clínico/normas , Testes de Sensibilidade a Antimicrobianos por Disco-Difusão/normas , Bactérias Gram-Negativas/efeitos dos fármacos , Antibacterianos/farmacologia , Meios de Cultura , Enterobacteriaceae/efeitos dos fármacos , Enterobacteriaceae/isolamento & purificação , Bactérias Gram-Negativas/isolamento & purificação , Humanos , Fatores de Tempo
9.
PLoS One ; 12(10): e0186203, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29023502

RESUMO

While the inquiry approach to science teaching has been widely recommended as an epistemic mechanism to promote deep content understanding, there is also increased expectation that process and other transferable skills should be integral part of science pedagogy. To test the hypothesis that coupling process skills to content teaching impacts academic success measures, we meta-analyzed twenty-one studies (n = 21) involving 7876 students that compared Process Oriented Guided Inquiry Learning (POGIL), a pedagogy that provides opportunities for improving process skills during content learning through guided-inquiry activities, to standard lecture conditions. Based on conventional measures of class performance, POGIL had a small effect on achievement outcomes (effect size = 0.29, [95% CI = 0.15-0.43]) but substantially improved the odds of passing a class (odds ratio = 2.02, [95% CI: 1.45-2.83]). That is, participants in the POGIL pedagogy had higher odds of passing a course and roughly performed 0.3 standard deviations higher on achievement measures than participants in standard lectures. In relative risk terms, POGIL reduced the risk of failing a course by 38%. These findings suggest providing opportunities to improve process skills during class instruction does not inhibit content learning but enhances conventional success measures. We compare these findings with those of recent large meta-analysis that examined the effects of global active learning methods on achievement outcomes and course failure rates in science, technology, engineering, and mathematics (STEM) fields.


Assuntos
Avaliação Educacional/métodos , Aprendizagem Baseada em Problemas/métodos , Escolaridade , Humanos , Aprendizagem , Ciência/educação
10.
J Bone Miner Res ; 31(5): 949-63, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26614970

RESUMO

Hydrogen sulfide (H2 S) is a gasotransmitter known to regulate bone formation and bone mass in unperturbed mice. However, it is presently unknown whether H2 S plays a role in pathologic bone loss. Here we show that ovariectomy (ovx), a model of postmenopausal bone loss, decreases serum H2 S levels and the bone marrow (BM) levels of two key H2 S-generating enzymes, cystathione ß-synthase (CBS) and cystathione γ-lyase (CSE). Treatment with the H2 S-donor GYY4137 (GYY) normalizes serum H2 S in ovx mice, increases bone formation, and completely prevents the loss of trabecular bone induced by ovx. Mechanistic studies revealed that GYY increases murine osteoblastogenesis by activating Wnt signaling through increased production of the Wnt ligands Wnt16, Wnt2b, Wnt6, and Wnt10b in the BM. Moreover, in vitro treatment with 17ß-estradiol upregulates the expression of CBS and CSE in human BM stromal cells (hSCs), whereas an H2 S-releasing drug induces osteogenic differentiation of hSCs. In summary, regulation of H2 S levels is a novel mechanism by which estrogen stimulates osteoblastogenesis and bone formation in mice and human cells. Blunted production of H2 S contributes to ovx-induced bone loss in mice by limiting the compensatory increase in bone formation elicited by ovx. Restoration of H2 S levels is a potential novel therapeutic approach for postmenopausal osteoporosis. © 2015 American Society for Bone and Mineral Research.


Assuntos
Estrogênios/deficiência , Sulfeto de Hidrogênio/metabolismo , Osteogênese , Osteoporose Pós-Menopausa/metabolismo , Via de Sinalização Wnt , Animais , Células da Medula Óssea/metabolismo , Células da Medula Óssea/patologia , Feminino , Humanos , Camundongos , Osteoporose Pós-Menopausa/patologia , Células Estromais/metabolismo , Células Estromais/patologia , Proteínas Wnt/metabolismo
11.
Cell Metab ; 22(5): 799-810, 2015 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-26456334

RESUMO

Primary hyperparathyroidism (PHPT) is a common cause of bone loss that is modeled by continuous PTH (cPTH) infusion. Here we show that the inflammatory cytokine IL-17A is upregulated by PHPT in humans and cPTH in mice. In humans, IL-17A is normalized by parathyroidectomy. In mice, treatment with anti-IL-17A antibody and silencing of IL-17A receptor IL-17RA prevent cPTH-induced osteocytic and osteoblastic RANKL production and bone loss. Mechanistically, cPTH stimulates conventional T cell production of TNFα (TNF), which increases the differentiation of IL-17A-producing Th17 cells via TNF receptor 1 (TNFR1) signaling in CD4(+) cells. Moreover, cPTH enhances the sensitivity of naive CD4(+) cells to TNF via GαS/cAMP/Ca(2+) signaling. Accordingly, conditional deletion of GαS in CD4(+) cells and treatment with the calcium channel blocker diltiazem prevents Th17 cell expansion and blocks cPTH-induced bone loss. Neutralization of IL-17A and calcium channel blockers may thus represent novel therapeutic strategies for hyperparathyroidism.


Assuntos
Doenças Ósseas Metabólicas/metabolismo , Hiperparatireoidismo Primário/metabolismo , Interleucina-17/metabolismo , Animais , Doenças Ósseas Metabólicas/tratamento farmacológico , Doenças Ósseas Metabólicas/etiologia , Doenças Ósseas Metabólicas/patologia , Bloqueadores dos Canais de Cálcio/uso terapêutico , Humanos , Hiperparatireoidismo Primário/complicações , Hiperparatireoidismo Primário/tratamento farmacológico , Hiperparatireoidismo Primário/patologia , Interleucina-17/biossíntese , Camundongos , Receptores Tipo I de Fatores de Necrose Tumoral/biossíntese , Transdução de Sinais , Linfócitos T/metabolismo , Linfócitos T/patologia , Fator de Necrose Tumoral alfa/biossíntese
12.
J Bone Miner Res ; 30(4): 695-705, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25359628

RESUMO

T cells are known to potentiate the bone anabolic activity of intermittent parathyroid hormone (iPTH) treatment. One of the involved mechanisms is increased T cell secretion of Wnt10b, a potent osteogenic Wnt ligand that activates Wnt signaling in stromal cells (SCs). However, additional mechanisms might play a role, including direct interactions between surface receptors expressed by T cells and SCs. Here we show that iPTH failed to promote SC proliferation and differentiation into osteoblasts (OBs) and activate Wnt signaling in SCs of mice with a global or T cell-specific deletion of the T cell costimulatory molecule CD40 ligand (CD40L). Attesting to the relevance of T cell-expressed CD40L, iPTH induced a blunted increase in bone formation and failed to increase trabecular bone volume in CD40L(-/-) mice and mice with a T cell-specific deletion of CD40L. CD40L null mice exhibited a blunted increase in T cell production of Wnt10b and abrogated CD40 signaling in SCs in response to iPTH treatment. Therefore, expression of the T cell surface receptor CD40L enables iPTH to exert its bone anabolic activity by activating CD40 signaling in SCs and maximally stimulating T cell production of Wnt10b.


Assuntos
Anabolizantes/farmacologia , Osso e Ossos/efeitos dos fármacos , Ligante de CD40/imunologia , Hormônio Paratireóideo/farmacologia , Linfócitos T/imunologia , Anabolizantes/administração & dosagem , Animais , Ligante de CD40/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hormônio Paratireóideo/administração & dosagem
13.
J Bone Miner Res ; 29(1): 43-54, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24357520

RESUMO

Both blunted osteocytic production of the Wnt inhibitor sclerostin (Scl) and increased T-cell production of the Wnt ligand Wnt10b contribute to the bone anabolic activity of intermittent parathyroid hormone (iPTH) treatment. However, the relative contribution of these mechanisms is unknown. In this study, we modeled the repressive effects of iPTH on Scl production in mice by treatment with a neutralizing anti-Scl antibody (Scl-Ab) to determine the contribution of T-cell-produced Wnt10b to the Scl-independent modalities of action of iPTH. We report that combined treatment with Scl-Ab and iPTH was more potent than either iPTH or Scl-Ab alone in increasing stromal cell production of OPG, osteoblastogenesis, osteoblast life span, bone turnover, bone mineral density, and trabecular bone volume and structure in mice with T cells capable of producing Wnt10b. In T-cell-null mice and mice lacking T-cell production of Wnt10b, combined treatment increased bone turnover significantly more than iPTH or Scl-Ab alone. However, in these mice, combined treatment with Scl-Ab and iPTH was equally effective as Scl-Ab alone in increasing the osteoblastic pool, bone volume, density, and structure. These findings demonstrate that the Scl-independent activity of iPTH on osteoblasts and bone mass is mediated by T-cell-produced Wnt10b. The data provide a proof of concept of a more potent therapeutic effect of combined treatment with iPTH and Scl-Ab than either alone.


Assuntos
Glicoproteínas/antagonistas & inibidores , Hormônio Paratireóideo/administração & dosagem , Proteínas Wnt/biossíntese , Proteínas Adaptadoras de Transdução de Sinal , Animais , Anticorpos/farmacologia , Densidade Óssea/efeitos dos fármacos , Osso e Ossos/efeitos dos fármacos , Feminino , Glicoproteínas/biossíntese , Glicoproteínas/imunologia , Peptídeos e Proteínas de Sinalização Intercelular , Camundongos , Osteoblastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Linfócitos T/metabolismo
14.
Clin Exp Metastasis ; 30(1): 13-23, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22678424

RESUMO

Transforming growth factor-ß (TGFß) is a secreted cytokine implicated as a factor in cancer cell migration and invasion. Previous studies have indicated that TGFß isoforms may exert differential effects on cancer cells during different stages of the disease, however very little is known about the expression patterns and activity of the three isoforms in prostate cancer. Non-traditional signaling pathways including the PI3-Kinase have been associated with TGFß-mediated effects on cancer cell invasion. In the present study, we have carried out expression analysis of TGFß isoforms and signaling components in cell line models representing different stages of prostate cancer and studied the differential effects of specific isoforms on migratory and invasive behavior and induction of the PI3-kinase pathway. TGFß1 and TGFß3 were expressed in all cell lines, with TGFß3 expression increasing in metastatic cell lines. Both TGFß1 and TGFß3 induced motility and invasive behavior in PC3 cells, however, TGFß3 was significantly more potent than TGFß1. TGFßRI and Smad3 inhibitors blocked TGFß1 and TGFß3 induced motility and invasion. TGFß3 caused a significant increase in pAKT(ser473) in PC3 cells and PI3-kinase inhibitor LY294002 blocked TGFß3 induced migration, invasion and phosphorylation of AKT. Both TGFßRI and Smad3 inhibitors blocked TGFß3 induced pAKT(ser473). Based on these results, we conclude that TGFß3 is expressed in metastatic prostate cancer cell lines and is involved in induction of invasive behavior in these cells. Furthermore, these effects of TGFß3 are TGFßRI and Smad3 dependent and mediated via the PI3-kinase pathway.


Assuntos
Movimento Celular , Fosfatidilinositol 3-Quinases/metabolismo , Próstata/metabolismo , Neoplasias da Próstata/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta1/metabolismo , Western Blotting , Adesão Celular , Proliferação de Células , Células Cultivadas , Humanos , Masculino , Fosfatidilinositol 3-Quinases/genética , Fosforilação , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Crescimento Transformador beta1/genética , Cicatrização
15.
Prostate ; 73(6): 624-33, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23060149

RESUMO

BACKGROUND: In prostate cancer cells, transforming growth factor ß (TGFß) inhibits proliferation in earlier stages of the disease; however, the cancer cells become refractory to growth inhibitory effects in advanced stages where TGFß promotes cancer progression and metastasis. Inhibitor of differentiation (Id) family of closely related proteins (Id1-Id4) are dominant negative regulators and basic helix loop helix (bHLH) transcription factors and in general promote proliferation, and inhibit differentiation. In the present study, we have investigated the role of Id1 and Id3 proteins in the growth inhibitory effects of TGFß on prostate cancer cells. METHODS: The effect of TGF ß on proliferation and Id1 and Id3 expression were investigated in PZ-HPV7, DU145, and PC3 cells. Id1 silencing through siRNA was also used in DU145 and PC3 cells to examine its role in anti-proliferative and migratory effects of TGFß. RESULTS: TGFß increased expression of Id1 and Id3 in all cell lines followed by a later down regulation of Id1 in PZ-HPV7 expression and DU145 cells but not in PC3 cells. Id3 expression remained elevated in all three cell lines. This loss of Id1 protein correlated with an increase of CDKNI p21. Id1 knockdown in both DU145 and PC3 cells resulted in decreased proliferation. However, while TGFß caused a further decrease in proliferation of DU145, but had no further effects in PC3 cells. Knockdown of Id1 or Id3 inhibited TGFß1induced migration in PC3 cells. CONCLUSIONS: These findings suggest an essential role of Id1 and Id3 in TGFß1 effects on proliferation and migration in prostate cancer cells.


Assuntos
Movimento Celular/fisiologia , Proteína 1 Inibidora de Diferenciação/genética , Proteínas Inibidoras de Diferenciação/genética , Proteínas de Neoplasias/genética , Neoplasias da Próstata , Fator de Crescimento Transformador beta1/metabolismo , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Células Epiteliais/fisiologia , Regulação Neoplásica da Expressão Gênica/fisiologia , Inibidores do Crescimento/metabolismo , Inibidores do Crescimento/farmacologia , Humanos , Proteína 1 Inibidora de Diferenciação/metabolismo , Proteínas Inibidoras de Diferenciação/metabolismo , Masculino , Proteínas de Neoplasias/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , RNA Interferente Pequeno/genética , Fator de Crescimento Transformador beta1/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA