Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 95(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38629930

RESUMO

Laser Thomson scattering (LTS) is a measurement technique that can determine electron velocity distribution functions in plasma systems. However, accurately inferring quantities of interest from an LTS signal requires the selection of a plasma physics submodel, and comprehensive uncertainty quantification (UQ) is needed to interpret the results. Automated model selection, parameter estimation, and UQ are particularly challenging for low-density, low-temperature, potentially non-Maxwellian plasmas like those created in space electric propulsion devices. This paper applies Bayesian inference and model selection to a Raman-calibrated LTS diagnostic in the context of such plasmas. Synthetic data are used to explore the performance of the method across signal-to-noise ratios and model fidelity regimes. Plasmas with Maxwellian and non-Maxwellian velocity distributions are well characterized using priors that span a range of accuracy and specificity. The model selection framework is shown to accurately detect the type of plasmas generating the electron velocity distribution submodel for signal-to-noise ratios greater than around 5. In addition, the Bayesian framework validates the widespread use of 95% confidence intervals from least-squares inversion as a conservative estimate of the uncertainty bounds. However, epistemic posterior correlations between the variables diverge between least-squares and Bayesian estimates as the number of variable parameters increases. This divergence demonstrates the need for Bayesian inference in cases where accurate correlations between electron parameters are necessary. Bayesian model selection is then applied to experimental Thomson scattering data collected in a nanosecond pulsed plasma, generated with a discharge voltage of 5 and 10 kV at a neutral argon background pressure of 7 Torr-Ar. The Bayesian maximum a posteriori estimates of the electron temperature and number density are 1.98 and 2.38 eV and 2.6 × 1018 and 2.72 × 1018 m-3, using the Maxwellian and Druyvesteyn submodels, respectively. Furthermore, for this dataset, the model selection criterion indicates strong support for the Maxwellian distribution at 10 kV discharge voltage and no strong preference between Maxwellian and Druyvesteyn distributions at 5 kV. The logarithmic Bayes' factors for these cases are -35.76 and 1.07, respectively.

2.
Rev Sci Instrum ; 95(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38557880

RESUMO

Laser Thomson scattering (LTS) is a minimally invasive measurement technique used for determining electron properties in plasma systems. Sheath model closure validation requires minimally invasive measurements of the electron properties that traverse the boundaries between the bulk plasma, the presheath, and the plasma sheath. Several studies have probed the radial properties along the surface of discharge electrodes with laser-based diagnostics and electrostatic probes. These measurements provide valuable insight into the electron properties in this dynamic region. However, sheath model calibration requires plasma property measurements perpendicular to plasma bounding surfaces, in this case, along the electrode normal vector between discharge electrodes. This work presents the development of a discharge plasma cell and laser Thomson scattering system with a measurement volume step of 1 mm normal to plasma bounding surfaces. The laser Thomson scattering measurements are made between a set of discharge electrodes separated by ∼25 mm that are used to generate a pulsed argon plasma. The spatial distribution of electron temperature and density is measured at several discharge voltages between 8 and 20 kV at a pressure of 8 Torr-Ar. It is determined that the system is statistically stationary and resembles a classic DC discharge plasma. The results are some of the first laser diagnostic-based "between electrode" measurements made along the plasma bounding electrode normal vector. A one-dimensional sheath model is applied to determine the near cathode electron properties, and it is determined that the edge of the presheath is probed in the high-voltage cases. As the lengths of the presheath and sheath decrease with decreasing voltage, the region recedes below the closest probed point to the cathode. To improve the performance of the diagnostic, the step size of the interrogation volume should decrease by an order of magnitude from 1 mm to less than 100 µm, and the data acquisition strategy should be revised to increase the signal-to-noise ratio.

3.
Opt Express ; 29(4): 4887-4901, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33726035

RESUMO

Terahertz time-domain spectroscopy (THz-TDS) is an optical diagnostic used to noninvasively measure plasma electron density and collision frequency. Conventional methods for analyzing THz-TDS plasma diagnostic data often do not account for measurement artifacts and do not quantify parameter uncertainties. We introduce a novel Bayesian framework that overcomes these deficiencies. The framework enables computation of both the density and collision frequency, compensates for artifacts produced by refraction and delay line errors, and quantifies parameter uncertainties caused by noise and imprecise knowledge of unmeasured plasma properties. We demonstrate the framework with sample measurements of a radio frequency inductively-coupled plasma discharge.

4.
Artigo em Inglês | MEDLINE | ID: mdl-29628543

RESUMO

Blood clots occur in the human body when they are required to prevent bleeding. In pathological states such as diabetes and sickle cell disease, blood clots can also form undesirably due to hypercoagulable plasma conditions. With the continued effort in developing fibrin therapies for potential life-saving solutions, more mechanical modeling is needed to understand the properties of fibrin structures with inclusions. In this study, a fibrin matrix embedded with magnetic micro particles (MMPs) was subjected to a magnetic field to determine the magnitude of the required force to create plastic deformation within the fibrin clot. Using finite element (FE) analysis, we estimated the magnetic force from an electromagnet at a sample space located approximately 3 cm away from the coil center. This electromagnetic force coupled with gravity was applied on a fibrin mechanical system with MMPs to calculate the stresses and displacements. Using appropriate coil parameters, it was determined that application of a magnetic field of 730 A/m on the fibrin surface was necessary to achieve an electromagnetic force of 36 nN (to engender plastic deformation).

5.
Rev Sci Instrum ; 81(7): 075106, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20687758

RESUMO

A rf power system has been developed, which allows the use of rf plasma devices in an electric propulsion test facility without excessive noise pollution in thruster diagnostics. Of particular importance are thrust stand measurements, which were previously impossible due to noise. Three major changes were made to the rf power system: first, the cable connection was changed from a balanced transmission line to an unbalanced coaxial line. Second, the rf power cabinet was placed remotely in order to reduce vibration-induced noise in the thrust stand. Finally, a relationship between transmission line length and rf was developed, which allows good transmission of rf power from the matching network to the helicon antenna. The modified system was tested on a thrust measurement stand and showed that rf power has no statistically significant contribution to the thrust stand measurement.

6.
Rev Sci Instrum ; 80(5): 055103, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19485530

RESUMO

This article presents the theory and operation of a null-type, inverted pendulum thrust stand. The thrust stand design supports thrusters having a total mass up to 250 kg and measures thrust over a range of 1 mN to 5 N. The design uses a conventional inverted pendulum to increase sensitivity, coupled with a null-type feature to eliminate thrust alignment error due to deflection of thrust. The thrust stand position serves as the input to the null-circuit feedback control system and the output is the current to an electromagnetic actuator. Mechanical oscillations are actively damped with an electromagnetic damper. A closed-loop inclination system levels the stand while an active cooling system minimizes thermal effects. The thrust stand incorporates an in situ calibration rig. The thrust of a 3.4 kW Hall thruster is measured for thrust levels up to 230 mN. The uncertainty of the thrust measurements in this experiment is +/-0.6%, determined by examination of the hysteresis, drift of the zero offset and calibration slope variation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA