Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Sci Transl Med ; 15(726): eadg8105, 2023 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-38091410

RESUMO

Chagas disease, caused by the protozoan parasite Trypanosoma cruzi, affects millions of people in the Americas and across the world, leading to considerable morbidity and mortality. Current treatment options, benznidazole (BNZ) and nifurtimox, offer limited efficacy and often lead to adverse side effects because of long treatment durations. Better treatment options are therefore urgently required. Here, we describe a pyrrolopyrimidine series, identified through phenotypic screening, that offers an opportunity to improve on current treatments. In vitro cell-based washout assays demonstrate that compounds in the series are incapable of killing all parasites; however, combining these pyrrolopyrimidines with a subefficacious dose of BNZ can clear all parasites in vitro after 5 days. These findings were replicated in a clinically predictive in vivo model of chronic Chagas disease, where 5 days of treatment with the combination was sufficient to prevent parasite relapse. Comprehensive mechanism of action studies, supported by ligand-structure modeling, show that compounds from this pyrrolopyrimidine series inhibit the Qi active site of T. cruzi cytochrome b, part of the cytochrome bc1 complex of the electron transport chain. Knowledge of the molecular target enabled a cascade of assays to be assembled to evaluate selectivity over the human cytochrome b homolog. As a result, a highly selective and efficacious lead compound was identified. The combination of our lead compound with BNZ rapidly clears T. cruzi parasites, both in vitro and in vivo, and shows great potential to overcome key issues associated with currently available treatments.


Assuntos
Doença de Chagas , Parasitos , Tripanossomicidas , Trypanosoma cruzi , Animais , Humanos , Citocromos b , Tripanossomicidas/efeitos adversos , Doença de Chagas/tratamento farmacológico , Doença de Chagas/induzido quimicamente , Doença de Chagas/parasitologia
2.
Sci Transl Med ; 15(726): eadh9902, 2023 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-38091406

RESUMO

New drugs for visceral leishmaniasis that are safe, low cost, and adapted to the field are urgently required. Despite concerted efforts over the last several years, the number of new chemical entities that are suitable for clinical development for the treatment of Leishmania remains low. Here, we describe the discovery and preclinical development of DNDI-6174, an inhibitor of Leishmania cytochrome bc1 complex activity that originated from a phenotypically identified pyrrolopyrimidine series. This compound fulfills all target candidate profile criteria required for progression into preclinical development. In addition to good metabolic stability and pharmacokinetic properties, DNDI-6174 demonstrates potent in vitro activity against a variety of Leishmania species and can reduce parasite burden in animal models of infection, with the potential to approach sterile cure. No major flags were identified in preliminary safety studies, including an exploratory 14-day toxicology study in the rat. DNDI-6174 is a cytochrome bc1 complex inhibitor with acceptable development properties to enter preclinical development for visceral leishmaniasis.


Assuntos
Leishmaniose Visceral , Leishmaniose , Ratos , Animais , Leishmaniose Visceral/tratamento farmacológico , Leishmaniose Visceral/parasitologia , Modelos Animais de Doenças
3.
mBio ; : e0180323, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37929970

RESUMO

Visceral leishmaniasis (VL) is a parasitic disease endemic across multiple regions of the world and is fatal if untreated. New therapeutic options with diverse mechanisms of actions (MoAs) are required to consolidate progress toward control of this disease and combat drug resistance. Here, we describe the development of a scalable resistance library screen (RES-Seq) as a tool to facilitate the identification and prioritization of anti-leishmanial compounds acting via novel MoA. We have amassed a large collection of Leishmania donovani cell lines resistant to frontline drugs and compounds in the VL pipeline, with resistance-conferring mutations fully characterized. New phenotypic hits screened against this highly curated panel of resistant lines can determine cross-resistance and potentially shared MoA. The ability to efficiently identify compounds acting via previously established MoA is vital to maintain diversity within drug development portfolios. To expedite screening, short identifier DNA barcodes were introduced into resistant clones enabling pooling and simultaneous screening of multiple cell lines. Illumina sequencing of barcodes enables the growth kinetics and relative fitness of multiple cell lines under compound selection to be tracked. Optimal conditions allowing discrimination of resistant and sensitive clones were established (3× and 10× EC50 for 3 days) and applied to screening of a complex library with VL preclinical and clinical drug candidates. RES-Seq is set to play an important role in ensuring that anti-leishmanial compounds exploiting diverse mechanisms of action are developed, ultimately providing options for future drug combination strategies.IMPORTANCEVisceral leishmaniasis (VL) remains the third largest parasitic killer worldwide, responsible for 20,000-30,000 deaths each year. Control and ultimate elimination of VL will require a range of therapeutic options with diverse mechanisms of action to combat drug resistance. One approach to ensure that compounds in development exploit diverse mechanisms of action is to screen them against highly curated cell lines resistant to drugs already in the VL pipeline. The identification of cross-resistant cell lines indicates that test compounds are likely acting via previously established mechanisms. Current cross-resistance screens are limited by the requirement to profile individual resistant cell lines one at a time. Here, we introduce unique DNA barcodes into multiple resistant cell lines to facilitate parallel profiling. Utilizing the power of Illumina sequencing, growth kinetics and relative fitness under compound selection can be monitored revolutionizing our ability to identify and prioritize compounds acting via novel mechanisms.

4.
J Med Chem ; 66(13): 8896-8916, 2023 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-37343180

RESUMO

While treatment options for human African trypanosomiasis (HAT) have improved significantly, there is still a need for new drugs with eradication now a realistic possibility. Here, we report the development of 2,4-diaminothiazoles that demonstrate significant potency against Trypanosoma brucei, the causative agent of HAT. Using phenotypic screening to guide structure-activity relationships, potent drug-like inhibitors were developed. Proof of concept was established in an animal model of the hemolymphatic stage of HAT. To treat the meningoencephalitic stage of infection, compounds were optimized for pharmacokinetic properties, including blood-brain barrier penetration. However, in vivo efficacy was not achieved, in part due to compounds evolving from a cytocidal to a cytostatic mechanism of action. Subsequent studies identified a nonessential kinase involved in the inositol biosynthesis pathway as the molecular target of these cytostatic compounds. These studies highlight the need for cytocidal drugs for the treatment of HAT and the importance of static-cidal screening of analogues.


Assuntos
Citostáticos , Tripanossomicidas , Trypanosoma brucei brucei , Tripanossomíase Africana , Animais , Humanos , Tripanossomíase Africana/tratamento farmacológico , Tripanossomicidas/uso terapêutico , Tripanossomicidas/farmacocinética , Citostáticos/uso terapêutico , Barreira Hematoencefálica
5.
ACS Infect Dis ; 8(9): 1962-1974, 2022 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-36037410

RESUMO

There is a pressing need for new medicines to prevent and treat malaria. Most antimalarial drug discovery is reliant upon phenotypic screening. However, with the development of improved target validation strategies, target-focused approaches are now being utilized. Here, we describe the development of a toolkit to support the therapeutic exploitation of a promising target, lysyl tRNA synthetase (PfKRS). The toolkit includes resistant mutants to probe resistance mechanisms and on-target engagement for specific chemotypes; a hybrid KRS protein capable of producing crystals suitable for ligand soaking, thus providing high-resolution structural information to guide compound optimization; chemical probes to facilitate pulldown studies aimed at revealing the full range of specifically interacting proteins and thermal proteome profiling (TPP); as well as streamlined isothermal TPP methods to provide unbiased confirmation of on-target engagement within a biologically relevant milieu. This combination of tools and methodologies acts as a template for the development of future target-enabling packages.


Assuntos
Antimaláricos , Lisina-tRNA Ligase , Malária , Antimaláricos/química , Antimaláricos/farmacologia , Descoberta de Drogas , Humanos , Lisina-tRNA Ligase/química , Lisina-tRNA Ligase/genética , Lisina-tRNA Ligase/metabolismo , Plasmodium falciparum/metabolismo
6.
J Physiol ; 600(10): 2499-2513, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35413129

RESUMO

The human TE671 cell line was originally used as a model of medulloblastoma but has since been reassigned as rhabdomyosarcoma. Despite the characterised endogenous expression of voltage-sensitive sodium currents in these cells, the specific voltage-gated sodium channel (VGSC) subtype underlying these currents remains unknown. To profile the VGSC subtype in undifferentiated TE671 cells, endpoint and quantitative reverse transcription-PCR (qRT-PCR), western blot and whole-cell patch clamp electrophysiology were performed. qRT-PCR profiling revealed that expression of the SCN9A gene was ∼215-fold greater than the SCN4A gene and over 400-fold greater than any of the other VGSC genes, while western blot confirmed that the dominant SCN9A RNA was translated to a protein with a molecular mass of ∼250 kDa. Elicited sodium currents had a mean amplitude of 2.6 ± 0.7 nA with activation and fast inactivation V50 values of -31.9 ± 1.1 and -69.6 ± 1.0 mV, respectively. The currents were completely and reversibly blocked by tetrodotoxin at concentrations greater than 100 nm (IC50  = 22.3 nm). They were also very susceptible to the NaV 1.7 specific blockers Huwentoxin-IV and Protoxin-II with IC50 values of 14.6 nm and 0.8 nm, respectively, characteristic of those previously determined for NaV 1.7. Combined, the results revealed the non-canonical and highly dominant expression of NaV 1.7 in the human TE671 rhabdomyosarcoma cell line. We show that the TE671 cell line is an easy to maintain and cost-effective model for the study of NaV 1.7, a major target for the development of analgesic drugs and more generally for the study of pain. KEY POINTS: Undifferentiated TE671 cells produce a voltage-sensitive sodium current when depolarised. The voltage-gated sodium channel isoform expressed in undifferentiated TE671 cells was previously unknown. Through qRT-PCR, western blot and toxin pharmacology, it is shown that undifferentiated TE671 cells dominantly (>99.5%) express the NaV 1.7 isoform that is strongly associated with pain. The TE671 cell line is, therefore, a very easy to maintain and cost-effective model to study NaV 1.7-targeting drugs.


Assuntos
Canal de Sódio Disparado por Voltagem NAV1.7 , Rabdomiossarcoma , Linhagem Celular , Humanos , Canal de Sódio Disparado por Voltagem NAV1.4 , Canal de Sódio Disparado por Voltagem NAV1.7/genética , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Dor , Rabdomiossarcoma/genética , Bloqueadores dos Canais de Sódio/farmacologia , Tetrodotoxina/farmacologia
7.
J Med Chem ; 65(7): 5606-5624, 2022 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-35303411

RESUMO

African animal trypanosomiasis or nagana, caused principally by infection of the protozoan parasites Trypanosoma congolense and Trypanosoma vivax, is a major problem in cattle and other livestocks in sub-Saharan Africa. Current treatments are threatened by the emergence of drug resistance and there is an urgent need for new, effective drugs. Here, we report the repositioning of a compound series initially developed for the treatment of human African trypanosomiasis. A medicinal chemistry program, focused on deriving more soluble analogues, led to development of a lead compound capable of curing cattle infected with both T. congolense and T. vivax via intravenous dosing. Further optimization has the potential to yield a single-dose intramuscular treatment for this disease. Comprehensive mode of action studies revealed that the molecular target of this promising compound and related analogues is the cyclin-dependent kinase CRK12.


Assuntos
Trypanosoma congolense , Tripanossomíase Africana , Animais , Bovinos , Quinases Ciclina-Dependentes , Reposicionamento de Medicamentos , Trypanosoma vivax , Tripanossomíase Africana/tratamento farmacológico , Tripanossomíase Africana/parasitologia , Tripanossomíase Africana/veterinária
8.
Antimicrob Agents Chemother ; 66(1): e0153521, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34606338

RESUMO

Phenotypic screening identified an arylsulfonamide compound with activity against Trypanosoma cruzi, the causative agent of Chagas' disease. Comprehensive mode of action studies revealed that this compound primarily targets the T. cruzi proteasome, binding at the interface between ß4 and ß5 subunits that catalyze chymotrypsin-like activity. A mutation in the ß5 subunit of the proteasome was associated with resistance to compound 1, while overexpression of this mutated subunit also reduced susceptibility to compound 1. Further genetically engineered and in vitro-selected clones resistant to proteasome inhibitors known to bind at the ß4/ß5 interface were cross-resistant to compound 1. Ubiquitinated proteins were additionally found to accumulate in compound 1-treated epimastigotes. Finally, thermal proteome profiling identified malic enzyme as a secondary target of compound 1, although malic enzyme inhibition was not found to drive potency. These studies identify a novel pharmacophore capable of inhibiting the T. cruzi proteasome that may be exploitable for anti-chagasic drug discovery.


Assuntos
Doença de Chagas , Trypanosoma cruzi , Doença de Chagas/tratamento farmacológico , Descoberta de Drogas , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/farmacologia , Trypanosoma cruzi/química
9.
J Med Chem ; 64(21): 16159-16176, 2021 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-34711050

RESUMO

Visceral leishmaniasis (VL) is a parasitic disease endemic across multiple regions of the world and is fatal if untreated. Current therapies are unsuitable, and there is an urgent need for safe, short-course, and low-cost oral treatments to combat this neglected disease. The benzoxaborole chemotype has previously delivered clinical candidates for the treatment of other parasitic diseases. Here, we describe the development and optimization of this series, leading to the identification of compounds with potent in vitro and in vivo antileishmanial activity. The lead compound (DNDI-6148) combines impressive in vivo efficacy (>98% reduction in parasite burden) with pharmaceutical properties suitable for onward development and an acceptable safety profile. Detailed mode of action studies confirm that DNDI-6148 acts principally through the inhibition of Leishmania cleavage and polyadenylation specificity factor (CPSF3) endonuclease. As a result of these studies and its promising profile, DNDI-6148 has been declared a preclinical candidate for the treatment of VL.


Assuntos
Antiprotozoários/uso terapêutico , Benzoxazóis/uso terapêutico , Compostos de Boro/uso terapêutico , Leishmaniose Visceral/tratamento farmacológico , Piridinas/uso terapêutico , Animais , Antiprotozoários/química , Benzoxazóis/química , Compostos de Boro/química , Cricetinae , Modelos Animais de Doenças , Cães , Humanos , Camundongos , Piridinas/química , Relação Estrutura-Atividade
10.
Microorganisms ; 9(7)2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34210040

RESUMO

Current treatment options for visceral leishmaniasis have several drawbacks, and clinicians are confronted with an increasing number of treatment failures. To overcome this, the Drugs for Neglected Diseases initiative (DNDi) has invested in the development of novel antileishmanial leads, including a very promising class of oxaboroles. The mode of action/resistance of this series to Leishmania is still unknown and may be important for its further development and implementation. Repeated in vivo drug exposure and an in vitro selection procedure on both extracellular promastigote and intracellular amastigote stages were both unable to select for resistance. The use of specific inhibitors for ABC-transporters could not demonstrate the putative involvement of efflux pumps. Selection experiments and inhibitor studies, therefore, suggest that resistance to oxaboroles may not emerge readily in the field. The selection of a genome-wide cosmid library coupled to next-generation sequencing (Cos-seq) was used to identify resistance determinants and putative targets. This resulted in the identification of a highly enriched cosmid, harboring genes of chromosome 2 that confer a subtly increased resistance to the oxaboroles tested. Moderately enriched cosmids encompassing a region of chromosome 34 contained the cleavage and polyadenylation specificity factor (cpsf) gene, encoding the molecular target of several related benzoxaboroles in other organisms.

11.
Cell Chem Biol ; 28(5): 711-721.e8, 2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-33691122

RESUMO

Phenotypic screening identified a benzothiophene compound with activity against Leishmania donovani, the causative agent of visceral leishmaniasis. Using multiple orthogonal approaches, oxidosqualene cyclase (OSC), a key enzyme of sterol biosynthesis, was identified as the target of this racemic compound and its enantiomers. Whole genome sequencing and screening of a genome-wide overexpression library confirmed that OSC gene amplification is associated with resistance to compound 1. Introduction of an ectopic copy of the OSC gene into wild-type cells reduced susceptibility to these compounds confirming the role of this enzyme in resistance. Biochemical analyses demonstrated the accumulation of the substrate of OSC and depletion of its product in compound (S)-1-treated-promastigotes and cell-free membrane preparations, respectively. Thermal proteome profiling confirmed that compound (S)-1 binds directly to OSC. Finally, modeling and docking studies identified key interactions between compound (S)-1 and the LdOSC active site. Strategies to improve the potency for this promising anti-leishmanial are proposed.


Assuntos
Antiprotozoários/farmacologia , Inibidores Enzimáticos/farmacologia , Transferases Intramoleculares/antagonistas & inibidores , Leishmania donovani/efeitos dos fármacos , Piperidinas/farmacologia , Antiprotozoários/síntese química , Antiprotozoários/química , Cristalografia por Raios X , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Transferases Intramoleculares/metabolismo , Leishmania donovani/enzimologia , Modelos Moleculares , Estrutura Molecular , Testes de Sensibilidade Parasitária , Piperidinas/síntese química , Piperidinas/química
12.
Life Sci Alliance ; 3(12)2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33106323

RESUMO

Cells use fatty acids (FAs) for membrane biosynthesis, energy storage, and the generation of signaling molecules. 3-hydroxyacyl-CoA dehydratase-DEH-is a key component of very long chain fatty acid synthesis. Here, we further characterized in-depth the location and function of DEH, applying in silico analysis, live cell imaging, reverse genetics, and ultrastructure analysis using the mouse malaria model Plasmodium berghei DEH is evolutionarily conserved across eukaryotes, with a single DEH in Plasmodium spp. and up to three orthologs in the other eukaryotes studied. DEH-GFP live-cell imaging showed strong GFP fluorescence throughout the life-cycle, with areas of localized expression in the cytoplasm and a circular ring pattern around the nucleus that colocalized with ER markers. Δdeh mutants showed a small but significant reduction in oocyst size compared with WT controls from day 10 postinfection onwards, and endomitotic cell division and sporogony were completely ablated, blocking parasite transmission from mosquito to vertebrate host. Ultrastructure analysis confirmed degeneration of Δdeh oocysts, and a complete lack of sporozoite budding. Overall, DEH is evolutionarily conserved, localizes to the ER, and plays a crucial role in sporogony.


Assuntos
Enoil-CoA Hidratase/metabolismo , Ácidos Graxos/biossíntese , Mitose/fisiologia , Plasmodium berghei/metabolismo , Animais , Anopheles , Divisão Celular , Coenzima A Ligases/metabolismo , Retículo Endoplasmático , Feminino , Estágios do Ciclo de Vida , Malária/metabolismo , Malária/transmissão , Camundongos , Oocistos/metabolismo , Oocistos/ultraestrutura , Plasmodium berghei/patogenicidade , Plasmodium berghei/fisiologia , Proteínas de Protozoários/metabolismo , Esporozoítos/metabolismo
13.
J Med Chem ; 63(17): 9523-9539, 2020 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-32663005

RESUMO

Visceral leishmaniasis (VL) is a parasitic infection that results in approximately 26 000-65 000 deaths annually. The available treatments are hampered by issues such as toxicity, variable efficacy, and unsuitable dosing options. The need for new treatments is urgent and led to a collaboration between the Drugs for Neglected Diseases initiative (DNDi), GlaxoSmithKline (GSK), and the University of Dundee. An 8-hydroxynaphthyridine was identified as a start point, and an early compound demonstrated weak efficacy in a mouse model of VL but was hampered by glucuronidation. Efforts to address this led to the development of compounds with improved in vitro profiles, but these were poorly tolerated in vivo. Investigation of the mode of action (MoA) demonstrated that activity was driven by sequestration of divalent metal cations, a mechanism which was likely to drive the poor tolerability. This highlights the importance of investigating MoA and pharmacokinetics at an early stage for phenotypically active series.


Assuntos
Antiprotozoários/química , Antiprotozoários/farmacologia , Desenho de Fármacos , Leishmania/efeitos dos fármacos , Naftiridinas/química , Naftiridinas/farmacologia , Animais , Concentração Inibidora 50 , Camundongos , Solubilidade , Relação Estrutura-Atividade , Água/química
14.
Cell Rep ; 30(6): 1883-1897.e6, 2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-32049018

RESUMO

Condensin is a multi-subunit protein complex regulating chromosome condensation and segregation during cell division. In Plasmodium spp., the causative agent of malaria, cell division is atypical and the role of condensin is unclear. Here we examine the role of SMC2 and SMC4, the core subunits of condensin, during endomitosis in schizogony and endoreduplication in male gametogenesis. During early schizogony, SMC2/SMC4 localize to a distinct focus, identified as the centromeres by NDC80 fluorescence and chromatin immunoprecipitation sequencing (ChIP-seq) analyses, but do not form condensin I or II complexes. In mature schizonts and during male gametogenesis, there is a diffuse SMC2/SMC4 distribution on chromosomes and in the nucleus, and both condensin I and condensin II complexes form at these stages. Knockdown of smc2 and smc4 gene expression reveals essential roles in parasite proliferation and transmission. The condensin core subunits (SMC2/SMC4) form different complexes and may have distinct functions at various stages of the parasite life cycle.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Mitose/fisiologia , Complexos Multiproteicos/metabolismo , Parasitos/patogenicidade , Plasmodium/patogenicidade , Animais , Proliferação de Células
15.
ACS Infect Dis ; 6(3): 515-528, 2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-31967783

RESUMO

Available treatments for Chagas' disease and visceral leishmaniasis are inadequate, and there is a pressing need for new therapeutics. Drug discovery efforts for both diseases principally rely upon phenotypic screening. However, the optimization of phenotypically active compounds is hindered by a lack of information regarding their molecular target(s). To combat this issue we initiate target deconvolution studies at an early stage. Here, we describe comprehensive genetic and biochemical studies to determine the targets of three unrelated phenotypically active compounds. All three structurally diverse compounds target the Qi active-site of cytochrome b, part of the cytochrome bc1 complex of the electron transport chain. Our studies go on to identify the Qi site as a promiscuous drug target in Leishmania donovani and Trypanosoma cruzi with a propensity to rapidly mutate. Strategies to rapidly identify compounds acting via this mechanism are discussed to ensure that drug discovery portfolios are not overwhelmed with inhibitors of a single target.


Assuntos
Antiparasitários/farmacologia , Citocromos b/antagonistas & inibidores , Descoberta de Drogas , Leishmania donovani/efeitos dos fármacos , Leishmania donovani/genética , Trypanosoma cruzi/efeitos dos fármacos , Trypanosoma cruzi/genética , Antiparasitários/química , Antiparasitários/isolamento & purificação , Doença de Chagas/tratamento farmacológico , Citocromos b/genética , Ensaios de Triagem em Larga Escala , Humanos , Leishmaniose Visceral/tratamento farmacológico
16.
Cell Microbiol ; 21(10): e13082, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31283102

RESUMO

The myosin superfamily comprises of actin-dependent eukaryotic molecular motors important in a variety of cellular functions. Although well studied in many systems, knowledge of their functions in Plasmodium, the causative agent of malaria, is restricted. Previously, six myosins were identified in this genus, including three Class XIV myosins found only in Apicomplexa and some Ciliates. The well characterized MyoA is a Class XIV myosin essential for gliding motility and invasion. Here, we characterize all other Plasmodium myosins throughout the parasite life cycle and show that they have very diverse patterns of expression and cellular location. MyoB and MyoE, the other two Class XIV myosins, are expressed in all invasive stages, with apical and basal locations, respectively. Gene deletion revealed that MyoE is involved in sporozoite traversal, MyoF and MyoK are likely essential in the asexual blood stages, and MyoJ and MyoB are not essential. Both MyoB and its essential light chain (MCL-B) are localised at the apical end of ookinetes but expressed at completely different time points. This work provides a better understanding of the role of actomyosin motors in Apicomplexan parasites, particularly in the motile and invasive stages of Plasmodium during sexual and asexual development within the mosquito.


Assuntos
Miosinas/metabolismo , Plasmodium/crescimento & desenvolvimento , Plasmodium/metabolismo , Proteínas de Protozoários/metabolismo , Esporozoítos/metabolismo , Animais , Feminino , Estágios do Ciclo de Vida , Espectrometria de Massas , Camundongos , Miosinas/química , Miosinas/genética , Fenótipo , Plasmodium/genética , Domínios Proteicos/genética , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Esporozoítos/crescimento & desenvolvimento
17.
Proc Natl Acad Sci U S A ; 116(19): 9318-9323, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-30962368

RESUMO

Visceral leishmaniasis (VL), caused by the protozoan parasites Leishmania donovani and Leishmania infantum, is one of the major parasitic diseases worldwide. There is an urgent need for new drugs to treat VL, because current therapies are unfit for purpose in a resource-poor setting. Here, we describe the development of a preclinical drug candidate, GSK3494245/DDD01305143/compound 8, with potential to treat this neglected tropical disease. The compound series was discovered by repurposing hits from a screen against the related parasite Trypanosoma cruzi Subsequent optimization of the chemical series resulted in the development of a potent cidal compound with activity against a range of clinically relevant L. donovani and L. infantum isolates. Compound 8 demonstrates promising pharmacokinetic properties and impressive in vivo efficacy in our mouse model of infection comparable with those of the current oral antileishmanial miltefosine. Detailed mode of action studies confirm that this compound acts principally by inhibition of the chymotrypsin-like activity catalyzed by the ß5 subunit of the L. donovani proteasome. High-resolution cryo-EM structures of apo and compound 8-bound Leishmania tarentolae 20S proteasome reveal a previously undiscovered inhibitor site that lies between the ß4 and ß5 proteasome subunits. This induced pocket exploits ß4 residues that are divergent between humans and kinetoplastid parasites and is consistent with all of our experimental and mutagenesis data. As a result of these comprehensive studies and due to a favorable developability and safety profile, compound 8 is being advanced toward human clinical trials.


Assuntos
Antiprotozoários/administração & dosagem , Leishmania donovani/efeitos dos fármacos , Leishmania infantum/efeitos dos fármacos , Leishmaniose Visceral/diagnóstico por imagem , Inibidores de Proteassoma/administração & dosagem , Proteínas de Protozoários/antagonistas & inibidores , Animais , Antiprotozoários/química , Sítios de Ligação , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Humanos , Leishmania donovani/química , Leishmania donovani/enzimologia , Leishmania infantum/química , Leishmania infantum/enzimologia , Leishmaniose Visceral/parasitologia , Masculino , Camundongos , Complexo de Endopeptidases do Proteassoma/química , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/química , Conformação Proteica , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo
18.
ACS Infect Dis ; 5(1): 111-122, 2019 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-30380837

RESUMO

Visceral leishmaniasis (VL), caused by the protozoan parasites Leishmania donovani and L. infantum, is responsible for ∼30 000 deaths annually. Available treatments are inadequate, and there is a pressing need for new therapeutics. N-Myristoyltransferase (NMT) remains one of the few genetically validated drug targets in these parasites. Here, we sought to pharmacologically validate this enzyme in Leishmania. A focused set of 1600 pyrazolyl sulfonamide compounds was screened against L. major NMT in a robust high-throughput biochemical assay. Several potent inhibitors were identified with marginal selectivity over the human enzyme. There was little correlation between the enzyme potency of these inhibitors and their cellular activity against L. donovani axenic amastigotes, and this discrepancy could be due to poor cellular uptake due to the basicity of these compounds. Thus, a series of analogues were synthesized with less basic centers. Although most of these compounds continued to suffer from relatively poor antileishmanial activity, our most potent inhibitor of LmNMT (DDD100097, K i of 0.34 nM) showed modest activity against L. donovani intracellular amastigotes (EC50 of 2.4 µM) and maintained a modest therapeutic window over the human enzyme. Two unbiased approaches, namely, screening against our cosmid-based overexpression library and thermal proteome profiling (TPP), confirm that DDD100097 (compound 2) acts on-target within parasites. Oral dosing with compound 2 resulted in a 52% reduction in parasite burden in our mouse model of VL. Thus, NMT is now a pharmacologically validated target in Leishmania. The challenge in finding drug candidates remains to identify alternative strategies to address the drop-off in activity between enzyme inhibition and in vitro activity while maintaining sufficient selectivity over the human enzyme, both issues that continue to plague studies in this area.


Assuntos
Aciltransferases/antagonistas & inibidores , Antiprotozoários/farmacologia , Descoberta de Drogas , Leishmania donovani/efeitos dos fármacos , Pirazóis/química , Pirazóis/farmacologia , Animais , Cosmídeos , Feminino , Ensaios de Triagem em Larga Escala , Humanos , Leishmaniose Visceral/tratamento farmacológico , Camundongos , Camundongos Endogâmicos BALB C , Carga Parasitária , Proteoma/análise , Proteômica
19.
Proc Natl Acad Sci U S A ; 115(38): 9616-9621, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30185555

RESUMO

African trypanosomes cause lethal and neglected tropical diseases, known as sleeping sickness in humans and nagana in animals. Current therapies are limited, but fortunately, promising therapies are in advanced clinical and veterinary development, including acoziborole (AN5568 or SCYX-7158) and AN11736, respectively. These benzoxaboroles will likely be key to the World Health Organization's target of disease control by 2030. Their mode of action was previously unknown. We have developed a high-coverage overexpression library and use it here to explore drug mode of action in Trypanosoma brucei Initially, an inhibitor with a known target was used to select for drug resistance and to test massive parallel library screening and genome-wide mapping; this effectively identified the known target and validated the approach. Subsequently, the overexpression screening approach was used to identify the target of the benzoxaboroles, Cleavage and Polyadenylation Specificity Factor 3 (CPSF3, Tb927.4.1340). We validated the CPSF3 endonuclease as the target, using independent overexpression strains. Knockdown provided genetic validation of CPSF3 as essential, and GFP tagging confirmed the expected nuclear localization. Molecular docking and CRISPR-Cas9-based editing demonstrated how acoziborole can specifically block the active site and mRNA processing by parasite, but not host CPSF3. Thus, our findings provide both genetic and chemical validation for CPSF3 as an important drug target in trypanosomes and reveal inhibition of mRNA maturation as the mode of action of the trypanocidal benzoxaboroles. Understanding the mechanism of action of benzoxaborole-based therapies can assist development of improved therapies, as well as the prediction and monitoring of resistance, if or when it arises.


Assuntos
Fator de Especificidade de Clivagem e Poliadenilação/antagonistas & inibidores , Proteínas de Protozoários/antagonistas & inibidores , Tripanossomicidas/farmacologia , Trypanosoma brucei brucei/fisiologia , Tripanossomíase Africana/prevenção & controle , Animais , Benzamidas/farmacologia , Benzamidas/uso terapêutico , Compostos de Boro/farmacologia , Compostos de Boro/uso terapêutico , Sistemas CRISPR-Cas , Núcleo Celular/genética , Núcleo Celular/metabolismo , Fator de Especificidade de Clivagem e Poliadenilação/genética , Fator de Especificidade de Clivagem e Poliadenilação/metabolismo , Resistência a Medicamentos/efeitos dos fármacos , Resistência a Medicamentos/genética , Técnicas de Silenciamento de Genes , Biblioteca Gênica , Ensaios de Triagem em Larga Escala/métodos , Humanos , Simulação de Acoplamento Molecular , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Processamento Pós-Transcricional do RNA/efeitos dos fármacos , RNA Mensageiro/metabolismo , RNA de Protozoário/metabolismo , Tripanossomicidas/uso terapêutico , Trypanosoma brucei brucei/efeitos dos fármacos , Tripanossomíase Africana/transmissão , Tripanossomíase Africana/veterinária , Valina/análogos & derivados , Valina/farmacologia , Valina/uso terapêutico
20.
Sci Rep ; 8(1): 12814, 2018 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-30127502

RESUMO

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA