RESUMO
Tephra is a unique volcanic product with an unparalleled role in understanding past eruptions, long-term behavior of volcanoes, and the effects of volcanism on climate and the environment. Tephra deposits also provide spatially widespread, high-resolution time-stratigraphic markers across a range of sedimentary settings and thus are used in numerous disciplines (e.g., volcanology, climate science, archaeology). Nonetheless, the study of tephra deposits is challenged by a lack of standardization that inhibits data integration across geographic regions and disciplines. We present comprehensive recommendations for tephra data gathering and reporting that were developed by the tephra science community to guide future investigators and to ensure that sufficient data are gathered for interoperability. Recommendations include standardized field and laboratory data collection, reporting and correlation guidance. These are organized as tabulated lists of key metadata with their definition and purpose. They are system independent and usable for template, tool, and database development. This standardized framework promotes consistent documentation and archiving, fosters interdisciplinary communication, and improves effectiveness of data sharing among diverse communities of researchers.
Assuntos
ClimaRESUMO
During explosive eruptions, airborne particles collide and stick together, accelerating the fallout of volcanic ash and climate-forcing aerosols. This aggregation process remains a major source of uncertainty both in ash dispersal forecasting and interpretation of eruptions from the geological record. Here we illuminate the mechanisms and timescales of particle aggregation from a well-characterized 'wet' eruption. The 2009 eruption of Redoubt Volcano, Alaska, incorporated water from the surface (in this case, a glacier), which is a common occurrence during explosive volcanism worldwide. Observations from C-band weather radar, fall deposits and numerical modelling demonstrate that hail-forming processes in the eruption plume triggered aggregation of â¼95% of the fine ash and stripped much of the erupted mass out of the atmosphere within 30 min. Based on these findings, we propose a mechanism of hail-like ash aggregation that contributes to the anomalously rapid fallout of fine ash and occurrence of concentrically layered aggregates in volcanic deposits.