Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Virol ; 97(10): e0060223, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37754760

RESUMO

IMPORTANCE: Influenza A viruses (IAVs) contain hemagglutinin (HA) proteins involved in sialoglycan receptor binding and neuraminidase (NA) proteins that cleave sialic acids. While the importance of the NA protein in virion egress is well established, its role in virus entry remains to be fully elucidated. NA activity is needed for the release of virions from mucus decoy receptors, but conflicting results have been reported on the importance of NA activity in virus entry in the absence of decoy receptors. We now show that inhibition of NA activity affects virus entry depending on the receptor-binding properties of HA and the receptor repertoire present on cells. Inhibition of entry by the presence of mucus correlated with the importance of NA activity for virus entry, with the strongest inhibition being observed when mucus and OsC were combined. These results shed light on the importance in virus entry of the NA protein, an important antiviral drug target.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza , Vírus da Influenza A , Neuraminidase , Receptores Virais , Proteínas Virais , Internalização do Vírus , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Vírus da Influenza A/enzimologia , Vírus da Influenza A/metabolismo , Influenza Humana/enzimologia , Influenza Humana/metabolismo , Neuraminidase/antagonistas & inibidores , Neuraminidase/metabolismo , Ligação Proteica , Receptores Virais/metabolismo , Especificidade por Substrato , Proteínas Virais/antagonistas & inibidores , Proteínas Virais/metabolismo , Linhagem Celular , Muco
2.
Trends Microbiol ; 29(11): 983-992, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33875348

RESUMO

Efficient penetration of the mucus layer is needed for respiratory viruses to avoid mucociliary clearance prior to infection. Many respiratory viruses bind to glycans on the heavily glycosylated mucins that give mucus its gel-like characteristics. Influenza viruses, some paramyxoviruses, and coronaviruses avoid becoming trapped in the mucus by releasing themselves by means of their envelope-embedded enzymes that destroy glycan receptors. For efficient infection, receptor binding and destruction need to be in balance with the host receptor repertoire. Establishment in a novel host species requires resetting of the balance to adapt to the different glycan repertoire encountered. Growing understanding of species-specific mucosal glycosylation patterns and the dynamic interaction with respiratory viruses identifies the mucus layer as a major host-range determinant and barrier for zoonotic transfer.


Assuntos
Especificidade de Hospedeiro , Vírus , Glicosilação , Mucinas/metabolismo , Muco/metabolismo , Polissacarídeos/metabolismo , Vírus/metabolismo
3.
PLoS Negl Trop Dis ; 13(11): e0007346, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31693659

RESUMO

BACKGROUND: Aedes aegypti is a vector mosquito of major public health importance, transmitting arthropod-borne viruses (arboviruses) such as chikungunya, dengue, yellow fever and Zika viruses. Wild mosquito populations are persistently infected at high prevalence with insect-specific viruses that do not replicate in vertebrate hosts. In experimental settings, acute infections with insect-specific viruses have been shown to modulate arbovirus infection and transmission in Ae. aegypti and other vector mosquitoes. However, the impact of persistent insect-specific virus infections, which arboviruses encounter more commonly in nature, has not been investigated extensively. Cell lines are useful models for studying virus-host interactions, however the available Ae. aegypti cell lines are poorly defined and heterogenous cultures. METHODOLOGY/PRINCIPLE FINDINGS: We generated single cell-derived clonal cell lines from the commonly used Ae. aegypti cell line Aag2. Two of the fourteen Aag2-derived clonal cell lines generated harboured markedly and consistently reduced levels of the insect-specific bunyavirus Phasi Charoen-like virus (PCLV) known to persistently infect Aag2 cells. In contrast to studies with acute insect-specific virus infections in cell culture and in vivo, we found that pre-existing persistent PCLV infection had no major impact on the replication of the flaviviruses dengue virus and Zika virus, the alphavirus Sindbis virus, or the rhabdovirus vesicular stomatitis virus. We also performed a detailed characterisation of the morphology, transfection efficiency and immune status of our Aag2-derived clonal cell lines, and have made a clone that we term Aag2-AF5 available to the research community as a well-defined cell culture model for arbovirus-vector interaction studies. CONCLUSIONS/SIGNIFICANCE: Our findings highlight the need for further in vivo studies that more closely recapitulate natural arbovirus transmission settings in which arboviruses encounter mosquitoes harbouring persistent rather than acute insect-specific virus infections. Furthermore, we provide the well-characterised Aag2-derived clonal cell line as a valuable resource to the arbovirus research community.


Assuntos
Aedes/virologia , Arbovírus/crescimento & desenvolvimento , Coinfecção/virologia , Mosquitos Vetores/virologia , Orthobunyavirus/crescimento & desenvolvimento , Replicação Viral , Alphavirus/crescimento & desenvolvimento , Animais , Arbovírus/genética , Sequência de Bases , Técnicas de Cultura de Células/métodos , Linhagem Celular , Vírus da Dengue/crescimento & desenvolvimento , Flavivirus/genética , Flavivirus/crescimento & desenvolvimento , Genoma Viral , Interações Hospedeiro-Patógeno/fisiologia , Orthobunyavirus/genética , Vírus de RNA/genética , Vírus de RNA/crescimento & desenvolvimento , Rhabdoviridae/crescimento & desenvolvimento , Sindbis virus/crescimento & desenvolvimento , Transfecção , Zika virus/crescimento & desenvolvimento
4.
J Gen Virol ; 97(2): 306-315, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26675486

RESUMO

For influenza A and B viruses to be infectious, they require eight viral RNA (vRNA) genome segments to be packaged into virions. For efficient packaging, influenza A viruses utilize cis-acting vRNA sequences, containing both non-coding and protein coding regions of each segment. Whether influenza B viruses have similar packaging signals is unknown. Here we show that coding regions at the 3' and 5' ends of the influenza B virus vRNA segment 4 are required for genome packaging, with the first 30 nt at each end essential for this process. Synonymous mutation of these regions led to virus attenuation, an increase in defective particle production and a reduction in packaging of multiple vRNAs. Overall, our data suggest that the influenza B virus vRNA gene segments likely interact with each other during the packaging process, which is driven by cis-acting packaging signals that extend into protein coding regions of the vRNA.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Vírus da Influenza B/fisiologia , RNA Viral/genética , Montagem de Vírus , Análise Mutacional de DNA , Humanos , Fases de Leitura Aberta , RNA não Traduzido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA