Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Microbiol Resour Announc ; 13(2): e0106623, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38132830

RESUMO

Phage Culver, with a siphovirus morphology, was isolated using Gordonia terrae CAG3. Culver is assigned to phage cluster CQ1 based on gene content similarity to actinobacteriophages. Notably, Culver is predicted to encode eight tRNAs, lysin A by two adjacent genes, and, unlike other CQ1 phages, two putative integrase genes.

2.
Nat Commun ; 13(1): 4105, 2022 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-35835745

RESUMO

Regulation of bacteriophage gene expression involves repressor proteins that bind and downregulate early lytic promoters. A large group of mycobacteriophages code for repressors that are unusual in also terminating transcription elongation at numerous binding sites (stoperators) distributed across the phage genome. Here we provide the X-ray crystal structure of a mycobacteriophage immunity repressor bound to DNA, which reveals the binding of a monomer to an asymmetric DNA sequence using two independent DNA binding domains. The structure is supported by small-angle X-ray scattering, DNA binding, molecular dynamics, and in vivo immunity assays. We propose a model for how dual DNA binding domains facilitate regulation of both transcription initiation and elongation, while enabling evolution of other superinfection immune specificities.


Assuntos
Bacteriófagos , Micobacteriófagos , Bacteriófagos/genética , Sequência de Bases , DNA/metabolismo , Micobacteriófagos/genética , Micobacteriófagos/metabolismo , Regiões Promotoras Genéticas/genética , Proteínas Virais/metabolismo
3.
Microbiol Resour Announc ; 11(6): e0016022, 2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35536032

RESUMO

The mycobacteriophages InvictusManeo (K5 subcluster) and Netyap (L2 subcluster) were isolated from soils in Cullowhee Creek, Cullowhee, North Carolina. Both exhibit Siphoviridae morphology and infect Mycobacterium smegmatis mc2155. The InvictusManeo genome is 61,147 bp and contains 96 predicted protein-coding genes, whereas the Netyap genome is 76,366 bp with 131 predicted protein-coding genes.

4.
J Phys Chem B ; 125(22): 5722-5739, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-34060838

RESUMO

Poly(aspartic acid) (PAA) is a common water-soluble polycarboxylate used in a broad range of applications. PAA biodegradation and environmental assimilation were first identified in river water bacterial strains, Sphingomonas sp. KT-1 and Pedobacter sp. KP-2. Within Sphingomonas sp. KT-1, PahZ1KT-1 cleaves ß-amide linkages to oligo(aspartic acid) and then is degraded by PahZ2KT-1. Recently, we reported the first structure for PahZ1KT-1. Here, we report novel structures for PahZ2KT-1 bound to either Gd3+/Sm3+ or Zn2+ cations in a dimeric state consistent with M28 metallopeptidase family members. PahZ2KT-1 monomers include a dimerization domain and a catalytic domain with dual Zn2+ cations. MD methods predict the putative substrate binding site to span across the dimerization and catalytic domains, where NaCl promotes the transition from an open conformation to a closed conformation that positions the substrate adjacent to catalytic zinc ions. Structural knowledge of PahZ1KT-1 and PahZ2KT-1 will allow for protein engineering endeavors to develop novel biodegradation reagents.


Assuntos
Sphingomonas , Cristalografia por Raios X , Hidrólise , Conformação Molecular , Nitrocompostos , Peptídeos , Quinazolinas
5.
PLoS One ; 15(6): e0234636, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32555720

RESUMO

The bacteriophage population is vast, dynamic, old, and genetically diverse. The genomics of phages that infect bacterial hosts in the phylum Actinobacteria show them to not only be diverse but also pervasively mosaic, and replete with genes of unknown function. To further explore this broad group of bacteriophages, we describe here the isolation and genomic characterization of 116 phages that infect Microbacterium spp. Most of the phages are lytic, and can be grouped into twelve clusters according to their overall relatedness; seven of the phages are singletons with no close relatives. Genome sizes vary from 17.3 kbp to 97.7 kbp, and their G+C% content ranges from 51.4% to 71.4%, compared to ~67% for their Microbacterium hosts. The phages were isolated on five different Microbacterium species, but typically do not efficiently infect strains beyond the one on which they were isolated. These Microbacterium phages contain many novel features, including very large viral genes (13.5 kbp) and unusual fusions of structural proteins, including a fusion of VIP2 toxin and a MuF-like protein into a single gene. These phages and their genetic components such as integration systems, recombineering tools, and phage-mediated delivery systems, will be useful resources for advancing Microbacterium genetics.


Assuntos
Actinobacteria/virologia , Bacteriófagos/genética , Variação Genética , Genoma Viral , Bacteriófagos/classificação , Bacteriófagos/isolamento & purificação , Composição de Bases , DNA Viral/genética , Genes Virais , Genômica , Filogenia , Proteínas Virais de Fusão/genética
6.
Biochemistry ; 58(45): 4466-4479, 2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31659895

RESUMO

Recent structural studies of the bacteriophage T7 DNA replication system have shed light on how multiple proteins assemble to copy two antiparallel DNA strands. In T7, acidic C-terminal tails of both the primase-helicase and single-stranded DNA binding protein bind to two basic patches on the DNA polymerase to aid in replisome assembly, processivity, and coordinated DNA synthesis. Although these electrostatic interactions are essential for DNA replication, the molecular details for how these tails bind the polymerase are unknown. We have determined an X-ray crystal structure of the T7 DNA polymerase bound to both a primer/template DNA and a peptide that mimics the C-terminal tail of the primase-helicase. The structure reveals that the essential C-terminal phenylalanine of the tail binds to a hydrophobic pocket that is surrounded by positive charge on the surface of the polymerase. We show that alterations of polymerase residues that engage the tail lead to defects in viral replication. In the structure, we also observe dTTP bound in the exonuclease active site and stacked against tryptophan 160. Using both primer/extension assays and high-throughput sequencing, we show how mutations in the exonuclease active site lead to defects in mismatch repair and an increase in the level of mutagenesis of the T7 genome. Finally, using small-angle X-ray scattering, we provide the first solution structures of a complex between the single-stranded DNA binding protein and the DNA polymerase and show how a single-stranded DNA binding protein dimer engages both one and two copies of DNA polymerase.


Assuntos
Bacteriófago T7/fisiologia , DNA Polimerase Dirigida por DNA/química , Proteínas Virais/química , Bacteriófago T7/química , Domínio Catalítico , Cristalografia por Raios X , DNA Viral/química , DNA Viral/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Ligação Proteica , Eletricidade Estática , Proteínas Virais/metabolismo , Replicação Viral
7.
Structure ; 25(1): 157-166, 2017 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-28052235

RESUMO

The physical organization of DNA enzymes at a replication fork enables efficient copying of two antiparallel DNA strands, yet dynamic protein interactions within the replication complex complicate replisome structural studies. We employed a combination of crystallographic, native mass spectrometry and small-angle X-ray scattering experiments to capture alternative structures of a model replication system encoded by bacteriophage T7. Two molecules of DNA polymerase bind the ring-shaped primase-helicase in a conserved orientation and provide structural insight into how the acidic C-terminal tail of the primase-helicase contacts the DNA polymerase to facilitate loading of the polymerase onto DNA. A third DNA polymerase binds the ring in an offset manner that may enable polymerase exchange during replication. Alternative polymerase binding modes are also detected by small-angle X-ray scattering with DNA substrates present. Our collective results unveil complex motions within T7 replisome higher-order structures that are underpinned by multivalent protein-protein interactions with functional implications.


Assuntos
Bacteriófago T7/enzimologia , DNA Primase/química , DNA Primase/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Bacteriófago T7/química , Sítios de Ligação , Cristalografia por Raios X , DNA Viral/metabolismo , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Espalhamento a Baixo Ângulo , Difração de Raios X
8.
Biochemistry ; 54(45): 6815-29, 2015 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-26506002

RESUMO

In probing the oxygen reactivity of an Enterococcus faecalis NADH oxidase (Nox; O2 → 2H2O) C42S mutant lacking the Cys42-sulfenic acid (Cys42-SOH) redox center, we provided direct evidence of a C(4a)-peroxyflavin intermediate in the oxidative half-reaction and also described a conformational or chemical change that is rate-limiting for full reoxidation of the homodimer. In this work, the Nox from Streptococcus pyogenes (SpyNox) has been expressed and crystallized, and the overoxidized wild-type [Cys44-SOH → Cys44-sulfinic acid (Cys44-SO2H)] and C44S mutant enzyme structures have been refined at 2.0 and 2.15 Å, respectively. We show that azide binds to the two-electron reduced wild-type (EH2) enzyme and to the mutant enzyme in solution, but with a significantly higher affinity for the mutant protein. The spectral course of the titration with the SpyNox EH2 form clearly indicates progressive displacement of the Cys44-S(-) → FAD charge-transfer interaction. An azide soak with C44S Nox crystals led to the structure of the complex, as refined at 2.10 Å. The active-site N3(-) ligand is proximal to the Ser44 and His11 side chains, and a significant shift in the Ser44 side chain also appears. This provides an attractive explanation for the azide-induced loss of charge-transfer absorbance seen with the wild-type EH2 form and also permits accommodation of a C(4a)-peroxyflavin structural model. The conformation of Ser44 and the associated helical element, and the resulting steric accommodation, appear to be linked to the conformational change described in the E. faecalis C42S Nox oxidative half-reaction.


Assuntos
Proteínas de Bactérias/química , Flavinas/química , Complexos Multienzimáticos/química , NADH NADPH Oxirredutases/química , Streptococcus pyogenes/enzimologia , Sequência de Aminoácidos , Azidas/metabolismo , Azidas/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Domínio Catalítico , Cristalografia por Raios X , Cisteína/química , Enterococcus faecalis/enzimologia , Modelos Moleculares , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Complexos Multienzimáticos/antagonistas & inibidores , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/isolamento & purificação , NADH NADPH Oxirredutases/antagonistas & inibidores , NADH NADPH Oxirredutases/genética , NADH NADPH Oxirredutases/isolamento & purificação , Oxirredução , Oxirredutases/química , Peroxidases/química , Conformação Proteica , Proteínas Recombinantes de Fusão/química , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade da Espécie , Streptococcus pyogenes/genética , Relação Estrutura-Atividade
9.
Biochemistry ; 52(23): 4026-36, 2013 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-23675753

RESUMO

Replisomes are multiprotein complexes that coordinate the synthesis of leading and lagging DNA strands to increase the replication efficiency and reduce DNA strand breaks caused by stalling of replication forks. The bacteriophage T7 replisome is an economical machine that requires only four proteins for processive, coupled synthesis of two DNA strands. Here we characterize a complex between T7 primase-helicase and DNA polymerase on DNA that was trapped during the initiation of Okazaki fragment synthesis from an RNA primer. This priming complex consists of two DNA polymerases and a primase-helicase hexamer that assemble on the DNA template in an RNA-dependent manner. The zinc binding domain of the primase-helicase is essential for trapping the RNA primer in complex with the polymerase, and a unique loop located on the thumb of the polymerase also stabilizes this primer extension complex. Whereas one of the polymerases engages the primase-helicase and RNA primer on the lagging strand of a model replication fork, the second polymerase in the complex is also functional and can bind a primed template DNA. These results indicate that the T7 primase-helicase specifically engages two copies of DNA polymerase, which would allow the coordination of leading and lagging strand synthesis at a replication fork. Assembly of the T7 replisome is driven by intimate interactions between the DNA polymerase and multiple subunits of the primase-helicase hexamer.


Assuntos
Bacteriófago T7/enzimologia , DNA Primase/química , Replicação do DNA , DNA Polimerase Dirigida por DNA/química , Substituição de Aminoácidos , Bacteriófago T7/genética , Sequência de Bases , Domínio Catalítico , DNA/química , DNA Primase/genética , DNA Viral/química , Substâncias Macromoleculares/química , Mutagênese Sítio-Dirigida , Polinucleotídeos/química , Ligação Proteica , Estrutura Quaternária de Proteína
10.
Biochemistry ; 51(39): 7699-711, 2012 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-22954034

RESUMO

Disruption of the unusual thiol-based redox homeostasis mechanisms in Staphylococcus aureus represents a unique opportunity to identify new metabolic processes and new targets for intervention. Targeting uncommon aspects of CoASH biosynthetic and redox functions in S. aureus, the antibiotic CJ-15,801 has recently been demonstrated to be an antimetabolite of the CoASH biosynthetic pathway in this organism; CoAS-mimetics containing α,ß-unsaturated sulfone and carboxyl moieties have also been exploited as irreversible inhibitors of S. aureus coenzyme A-disulfide reductase (SaCoADR). In this work we have determined the crystal structures of three of these covalent SaCoADR-inhibitor complexes, prepared by inactivation of wild-type enzyme during turnover. The structures reveal the covalent linkage between the active-site Cys43-S(γ) and C(ß) of the vinyl sulfone or carboxyl moiety. The full occupancy of two inhibitor molecules per enzyme dimer, together with kinetic analyses of the wild-type/C43S heterodimer, indicates that half-sites-reactivity is not a factor during normal catalytic turnover. Further, we provide the structures of SaCoADR active-site mutants; in particular, Tyr419'-OH plays dramatic roles in directing intramolecular reduction of the Cys43-SSCoA redox center, in the redox asymmetry observed for the two FAD per dimer in NADPH titrations, and in catalysis. The two conformations observed for the Ser43 side chain in the C43S mutant structure lend support to a conformational switch for Cys43-S(γ) during its catalytic Cys43-SSCoA/Cys43-SH redox cycle. Finally, the structures of the three inhibitor complexes provide a framework for design of more effective inhibitors with therapeutic potential against several major bacterial pathogens.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Coenzima A/química , Coenzima A/farmacologia , NADH NADPH Oxirredutases/antagonistas & inibidores , Staphylococcus aureus/enzimologia , Cristalografia por Raios X , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Humanos , Simulação de Acoplamento Molecular , Mutação , NADH NADPH Oxirredutases/química , NADH NADPH Oxirredutases/genética , NADH NADPH Oxirredutases/metabolismo , Oxirredução , Multimerização Proteica , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/química , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA