Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mov Ecol ; 9(1): 30, 2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34116712

RESUMO

BACKGROUND: Identifying the behavioral state for wild animals that can't be directly observed is of growing interest to the ecological community. Advances in telemetry technology and statistical methodologies allow researchers to use space-use and movement metrics to infer the underlying, latent, behavioral state of an animal without direct observations. For example, researchers studying ungulate ecology have started using these methods to quantify behaviors related to mating strategies. However, little work has been done to determine if assumed behaviors inferred from movement and space-use patterns correspond to actual behaviors of individuals. METHODS: Using a dataset with male and female white-tailed deer location data, we evaluated the ability of these two methods to correctly identify male-female interaction events (MFIEs). We identified MFIEs using the proximity of their locations in space as indicators of when mating could have occurred. We then tested the ability of utilization distributions (UDs) and hidden Markov models (HMMs) rendered with single sex location data to identify these events. RESULTS: For white-tailed deer, male and female space-use and movement behavior did not vary consistently when with a potential mate. There was no evidence that a probability contour threshold based on UD volume applied to an individual's UD could be used to identify MFIEs. Additionally, HMMs were unable to identify MFIEs, as single MFIEs were often split across multiple states and the primary state of each MFIE was not consistent across events. CONCLUSIONS: Caution is warranted when interpreting behavioral insights rendered from statistical models applied to location data, particularly when there is no form of validation data. For these models to detect latent behaviors, the individual needs to exhibit a consistently different type of space-use and movement when engaged in the behavior. Unvalidated assumptions about that relationship may lead to incorrect inference about mating strategies or other behaviors.

2.
Ecol Evol ; 11(6): 2731-2740, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33767832

RESUMO

Natal dispersal is assumed to be a particularly risky movement behavior as individuals transfer, often long distances, from birth site to site of potential first reproduction. Though, because this behavior persists in populations, it is assumed that dispersal increases the fitness of individuals despite the potential for increased risk of mortality. The extent of dispersal risk, however, has rarely been tested, especially for large mammals. Therefore, we aimed to test the relationship between dispersal and survival for both males and females in a large herbivore. Using a radio-transmittered sample of 398 juvenile male and 276 juvenile female white-tailed deer (Odocoileus virginianus), we compared survival rates of dispersers and nondispersers. We predicted that dispersing deer would experience greater overall mortality than philopatric deer due to direct transfer-related risks (e.g., vehicular collision), indirect immigration-related mortality attributable to colonization of unfamiliar habitat, and increased overwinter mortality associated with energetic costs of movement and unfamiliarity with recently colonized habitat. For both male and female yearlings, survival rates of dispersers (male = 49.9%, female = 64.0%) did not differ from nondispersers (male = 51.6%, female = 70.7%). Only two individuals (both female) were killed by vehicular collision during transfer, and overwinter survival patterns were similar between the two groups. Although dispersal movement likely incurs energetic costs on dispersers, these costs do not necessarily translate to decreased survival. In many species, including white-tailed deer, dispersal is likely condition-dependent, such that larger and healthier individuals are more likely to disperse; therefore, costs associated with dispersal are more likely to be borne successfully by those individuals that do disperse. Whether low-risk dispersal of large mammals is the rule or the exception will require additional research. Further, future research is needed to evaluate nonsurvival fitness-related costs and benefits of dispersal (e.g., increased reproductive opportunities for dispersers).

3.
Sci Rep ; 8(1): 14667, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30279590

RESUMO

In the northeastern United States, chronic wasting disease has recently been detected in white-tailed deer (Odocoileus virginianus) populations, and understanding the relationship between landscape configuration and home range may improve disease surveillance and containment efforts. The objectives of our study were to compare size of home range for deer occupying a continuum of forested landscapes and to investigate relationships between size of home range and measures of landscape configuration. We used a movement-based kernel density estimator to estimate home range at five spatial scales among deer across study areas. We developed 7 linear regression models that used measures of the configuration of the forested landscape to explain size of home range. We observed differences in size of home range between sexes among areas that differed based on landscape configuration. We documented size of home range changed with various metrics that identifying connectivity of forested patches. Generally, size of home range increased with an increasing proportion of homogenous forest. Our results suggest that deer in our region occupy a landscape at hierarchically-nested scales that is controlled by the connectivity of the forested landscape across local or broad geographical regions.


Assuntos
Migração Animal/fisiologia , Cervos/fisiologia , Comportamento de Retorno ao Território Vital/fisiologia , Modelos Biológicos , Doença de Emaciação Crônica/prevenção & controle , Animais , Monitorização de Parâmetros Ecológicos/instrumentação , Monitorização de Parâmetros Ecológicos/métodos , Florestas , Sistemas de Informação Geográfica , Modelos Lineares , New England , Tecnologia de Sensoriamento Remoto/instrumentação , Tecnologia de Sensoriamento Remoto/métodos , Estações do Ano , Análise Espacial , Doença de Emaciação Crônica/transmissão , Dispositivos Eletrônicos Vestíveis
4.
Ecol Evol ; 4(8): 1439-50, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24834339

RESUMO

The Brownie tag-recovery model is useful for estimating harvest rates but assumes all tagged individuals survive to the first hunting season; otherwise, mortality between time of tagging and the hunting season will cause the Brownie estimator to be negatively biased. Alternatively, fitting animals with radio transmitters can be used to accurately estimate harvest rate but may be more costly. We developed a joint model to estimate harvest and annual survival rates that combines known-fate data from animals fitted with transmitters to estimate the probability of surviving the period from capture to the first hunting season, and data from reward-tagged animals in a Brownie tag-recovery model. We evaluated bias and precision of the joint estimator, and how to optimally allocate effort between animals fitted with radio transmitters and inexpensive ear tags or leg bands. Tagging-to-harvest survival rates from >20 individuals with radio transmitters combined with 50-100 reward tags resulted in an unbiased and precise estimator of harvest rates. In addition, the joint model can test whether transmitters affect an individual's probability of being harvested. We illustrate application of the model using data from wild turkey, Meleagris gallapavo, to estimate harvest rates, and data from white-tailed deer, Odocoileus virginianus, to evaluate whether the presence of a visible radio transmitter is related to the probability of a deer being harvested. The joint known-fate tag-recovery model eliminates the requirement to capture and mark animals immediately prior to the hunting season to obtain accurate and precise estimates of harvest rate. In addition, the joint model can assess whether marking animals with radio transmitters affects the individual's probability of being harvested, caused by hunter selectivity or changes in a marked animal's behavior.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA