Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 17179, 2023 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-37821515

RESUMO

The advent of new spaceborne imaging spectrometers offers new opportunities for ecologists to map vegetation traits at global scales. However, to date most imaging spectroscopy studies exploiting satellite spectrometers have been constrained to the landscape scale. In this paper we present a new method to map vegetation traits at the landscape scale and upscale trait maps to the continental level, using historical spaceborne imaging spectroscopy (Hyperion) to derive estimates of leaf mass per area, nitrogen, and carbon concentrations of forests in Québec, Canada. We compare estimates for each species with reference field values and obtain good agreement both at the landscape and continental scales, with patterns consistent with the leaf economic spectrum. By exploiting the Hyperion satellite archive to map these traits and successfully upscale the estimates to the continental scale, we demonstrate the great potential of recent and upcoming spaceborne spectrometers to benefit plant biodiversity monitoring and conservation efforts.


Assuntos
Florestas , Árvores , Quebeque , Análise Espectral/métodos , Diagnóstico por Imagem , Folhas de Planta/química , Ecossistema
2.
Sci Rep ; 11(1): 24530, 2021 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-34972835

RESUMO

Biodiversity and ecosystem functions are highly threatened by global change. It has been proposed that geodiversity can be used as an easy-to-measure surrogate of biodiversity to guide conservation management. However, so far, there is mixed evidence to what extent geodiversity can predict biodiversity and ecosystem functions at the regional scale relevant for conservation planning. Here, we analyse how geodiversity computed as a compound index is suited to predict the diversity of four taxa and associated ecosystem functions in a tropical mountain hotspot of biodiversity and compare the results with the predictive power of environmental conditions and resources (climate, habitat, soil). We show that combinations of these environmental variables better explain species diversity and ecosystem functions than a geodiversity index and identified climate variables as more important predictors than habitat and soil variables, although the best predictors differ between taxa and functions. We conclude that a compound geodiversity index cannot be used as a single surrogate predictor for species diversity and ecosystem functions in tropical mountain rain forest ecosystems and is thus little suited to facilitate conservation management at the regional scale. Instead, both the selection and the combination of environmental variables are essential to guide conservation efforts to safeguard biodiversity and ecosystem functions.


Assuntos
Biodiversidade , Ecossistema , Meio Ambiente , Clima Tropical , Clima , Florestas , Modelos Teóricos , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA