Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Am J Physiol Endocrinol Metab ; 325(6): E672-E681, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37850935

RESUMO

Ingested galactose can enhance postexercise liver glycogen repletion when combined with glucose but effects on muscle glycogen synthesis are unknown. In this double-blind randomized study participants [7 men and 2 women; V̇o2max: 51.1 (8.7) mL·kg-1·min-1] completed three trials of exhaustive cycling exercise followed by a 4-h recovery period, during which carbohydrates were ingested at the rate of 1.2 g·kg-1·h-1 comprising glucose (GLU), galactose (GAL) or galactose + glucose (GAL + GLU; 1:2 ratio). The increase in vastus lateralis skeletal-muscle glycogen concentration during recovery was higher with GLU relative to GAL + GLU [contrast: +50 mmol·(kg DM)-1; 95%CL 10, 89; P = 0.021] and GAL [+46 mmol·(kg DM)-1; 95%CL 8, 84; P = 0.024] with no difference between GAL + GLU and GAL [-3 mmol·(kg DM)-1; 95%CL -44, 37; P = 0.843]. Plasma glucose concentration in GLU was not significantly different vs. GAL + GLU (+ 0.41 mmol·L-1; 95%CL 0.13, 0.94) but was significantly lower than GAL (-0.75 mmol·L-1; 95%CL -1.34, -0.17) and also lower in GAL vs. GAL + GLU (-1.16 mmol·-1; 95%CL -1.80, -0.53). Plasma insulin was higher in GLU + GAL and GLU compared with GAL but not different between GLU + GAL and GLU. Plasma galactose concentration was higher in GAL compared with GLU (3.35 mmol·L-1; 95%CL 3.07, 3.63) and GAL + GLU (3.22 mmol·L-1; 95%CL 3.54, 2.90) with no difference between GLU + GAL (0.13 mmol·L-1; 95%CL -0.11, 0.37) and GLU. Compared with galactose or a galactose + glucose blend, glucose feeding was more effective in postexercise muscle glycogen synthesis. Comparable muscle glycogen synthesis was observed with galactose-glucose coingestion and exclusive galactose-only ingestion.NEW & NOTEWORTHY Postexercise galactose-glucose coingestion or exclusive galactose-only ingestion resulted in a lower rate of skeletal-muscle glycogen replenishment compared with exclusive glucose-only ingestion. Comparable muscle glycogen synthesis was observed with galactose-glucose coingestion and exclusive galactose-only ingestion.


Assuntos
Galactose , Glucose , Feminino , Humanos , Masculino , Glicemia , Carboidratos da Dieta/farmacologia , Ingestão de Alimentos/fisiologia , Glicogênio , Insulina , Músculo Esquelético/fisiologia , Método Duplo-Cego
2.
Int J Sport Nutr Exerc Metab ; 33(4): 189-197, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37225168

RESUMO

Branched-chain amino acids (BCAA) and carbohydrate (CHO) are commonly recommended postexercise supplements. However, no study has examined the interaction of CHO and BCAA ingestion on myofibrillar protein synthesis (MyoPS) rates following exercise. We aimed to determine the response of MyoPS to the co-ingestion of BCAA and CHO following an acute bout of resistance exercise. Ten resistance-trained young men completed two trials in counterbalanced order, ingesting isocaloric drinks containing either 30.6-g CHO plus 5.6-g BCAA (B + C) or 34.7-g CHO alone following a bout of unilateral, leg resistance exercise. MyoPS was measured postexercise with a primed, constant infusion of L-[ring13C6] phenylalanine and collection of muscle biopsies pre- and 4 hr postdrink ingestion. Blood samples were collected at time points before and after drink ingestion. Serum insulin concentrations increased to a similar extent in both trials (p > .05), peaking at 30 min postdrink ingestion. Plasma leucine (514 ± 34 nmol/L), isoleucine (282 ± 23 nmol/L), and valine (687 ± 33 nmol/L) concentrations peaked at 0.5 hr postdrink in B + C and remained elevated for 3 hr during exercise recovery. MyoPS was ∼15% greater (95% confidence interval [-0.002, 0.028], p = .039, Cohen's d = 0.63) in B + C (0.128%/hr ± 0.011%/hr) than CHO alone (0.115%/hr ± 0.011%/hr) over the 4 hr postexercise period. Co-ingestion of BCAA and CHO augments the acute response of MyoPS to resistance exercise in trained young males.


Assuntos
Aminoácidos de Cadeia Ramificada , Treinamento Resistido , Masculino , Humanos , Carboidratos da Dieta/metabolismo , Leucina , Ingestão de Alimentos , Músculo Esquelético/metabolismo
3.
Sports Med Open ; 9(1): 16, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36811697

RESUMO

Prolonged low energy availability, which is the underpinning aetiology of the Relative Energy Deficiency in Sport and the Female and Male Athlete Triad frameworks, can have unfavourable impacts on both health and performance in athletes. Energy availability is calculated as energy intake minus exercise energy expenditure, expressed relative to fat free mass. The current measurement of energy intake is recognized as a major limitation for assessing energy availability due to its reliance on self-report methods, in addition to its short-term nature. This article introduces the application of the energy balance method for the measurement of energy intake, within the context of energy availability. The energy balance method requires quantification of the change in body energy stores over time, with concurrent measurement of total energy expenditure. This provides an objective calculation of energy intake, which can then be used for the assessment of energy availability. This approach, the Energy Availability - Energy Balance (EAEB) method, increases the reliance on objective measurements, provides an indication of energy availability status over longer periods and removes athlete burden to self-report energy intake. Implementation of the EAEB method could be used to objectively identify and detect low energy availability, with implications for the diagnosis and management of Relative Energy Deficiency in Sport and the Female and Male Athlete Triad.

4.
BMC Public Health ; 22(1): 1985, 2022 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-36316656

RESUMO

BACKGROUND: Prolonged sitting is associated with increased risk of obesity, type 2 diabetes and cardiovascular disease. Occupational sitting accounts for up to 50 h/week for employees. This pilot study assessed the acceptability of stair climbing as an interruption to sitting throughout working hours, and provided preliminary data of the effects on glucose and lipid profiles. METHODS: A quasi-experimental design was conducted involving 16 sedentary office workers (five females and 11 males) for intervention (n = 8) and control groups (n = 8) with mean age of 36.38 (5.58). For the eight-week intervention, a continuous four-floor stair climb and descent was performed eight times/day spread evenly over the working day. A prompt to climb was presented on the participant's computer eight times/day. Participants in the experimental group recorded daily floors climbed and steps (measured using pedometers) in a weekly log sheet. Blood samples were collected pre and post intervention to test effects on fasting glucose and 2 h plasma glucose, triglycerides, and total (TC), LDL and HDL cholesterol. Experimental participants were interviewed at the end of the study. The Wilcoxon signed rank test was used to compare the median changes (pre-post) of the dependent variables. RESULTS: On average, the experimental group climbed 121 floors/week when prompted. There were significant reductions in fasting blood glucose, TC and LDL, as well as the derived measures of 'bad' cholesterol and the TC/HDL ratio in the experimental group. Post-experimental interviews indicated that the interruption to sitting was well tolerated. CONCLUSION: Prompted stair climbing activity had impacts on health outcomes and was found acceptable to employees at work. TRIAL REGISTRATION: Ethics for this study was approved by Science, Technology, Engineering and Mathematics Ethical Review Committee, University of Birmingham with ethics reference number ERN_15_0491.


Assuntos
Diabetes Mellitus Tipo 2 , Saúde Ocupacional , Subida de Escada , Masculino , Feminino , Humanos , Adulto , Local de Trabalho , Projetos Piloto , Promoção da Saúde , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/prevenção & controle , Fatores de Risco , Glucose
5.
J Appl Physiol (1985) ; 133(5): 1166-1174, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36201325

RESUMO

Coingestion of glucose and galactose has been shown to enhance splanchnic extraction and metabolism of ingested galactose at rest; effects during exercise are unknown. This study examined whether combined ingestion of galactose and glucose during exercise enhances exogenous galactose oxidation. Fourteen endurance-trained male and female participants [age, 27 (5) yr; V̇o2peak, 58.1 (7.0) mL·kg-1·min-1] performed cycle ergometry for 150 min at 50% peak power on four occasions, in a randomized counterbalanced manner. During exercise, they ingested beverages providing carbohydrates at rates of 0.4 g.min-1 galactose (GAL), 0.8 g.min-1 glucose (GLU), and on two occasions 0.8 g.min-1 total galactose-glucose (GAL + GLU; 1:1 ratio). Single-monosaccharide 13C-labeling (*) was used to calculate independent (GAL, GLU, GAL* + GLU, and GAL + GLU*) and combined (GAL* + GLU*, COMBINE) exogenous-monosaccharide oxidation between exercise. Plasma galactose concentrations with GAL + GLU [0.4 mmol.L; 95% confidence limits (CL): 0.1, 0.6] were lower (contrast: 0.5 mmol.L; 95% CL: 0.2, 0.8; P < 0.0001) than when GAL alone (0.9 mmol.L; 95% CL: 0.7, 1.2) was ingested. Exogenous carbohydrate oxidation with GAL alone (0.31 g·min-1; 95% CL: 0.28, 0.35) was marginally reduced (contrast: 0.05 g·min-1; 95% CL: -0.09, 0.00007; P = 0.01) when combined with glucose (GAL* + GLU 0.27 g·min-1; 0.24, 0.30). Total combined exogenous-carbohydrate oxidation (COMBINE: 0.57 g·min-1; 95% CL: 0.49, 0.64) was similar (contrast: 0.02 g·min-1; 95% CL: -0.05, 0.09; P = 0.63) when compared with isoenergetic GLU (0.55 g·min-1; 95% CL: 0.52, 0.58). In conclusion, coingestion of glucose and galactose did not enhance exogenous galactose oxidation during exercise. When combined, isoenergetic galactose-glucose ingestion elicited similar exogenous-carbohydrate oxidation to glucose suggesting galactose-glucose blends are a valid alternative for glucose as an exogenous-carbohydrate source during exercise.NEW & NOTEWORTHY Glucose and galactose coingestion blunted the galactosemia seen with galactose-only ingestion during exercise. Glucose and galactose coingestion did not enhance the oxidation of ingested galactose during exercise. Combined galactose-glucose (1:1 ratio) ingestion was oxidized to a similar extent as isoenergetic glucose-only ingestion during exercise. Galactose-glucose blends are a viable exogenous carbohydrate energy source for ingestion during exercise.


Assuntos
Galactose , Glucose , Masculino , Feminino , Humanos , Adulto , Glucose/metabolismo , Consumo de Oxigênio , Glicemia/metabolismo , Carboidratos da Dieta/metabolismo , Oxirredução
6.
Sports Med ; 52(Suppl 1): 5-23, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36173597

RESUMO

The importance of carbohydrate as a fuel source for exercise and athletic performance is well established. Equally well developed are dietary carbohydrate intake guidelines for endurance athletes seeking to optimize their performance. This narrative review provides a contemporary perspective on research into the role of, and application of, carbohydrate in the diet of endurance athletes. The review discusses how recommendations could become increasingly refined and what future research would further our understanding of how to optimize dietary carbohydrate intake to positively impact endurance performance. High carbohydrate availability for prolonged intense exercise and competition performance remains a priority. Recent advances have been made on the recommended type and quantity of carbohydrates to be ingested before, during and after intense exercise bouts. Whilst reducing carbohydrate availability around selected exercise bouts to augment metabolic adaptations to training is now widely recommended, a contemporary view of the so-called train-low approach based on the totality of the current evidence suggests limited utility for enhancing performance benefits from training. Nonetheless, such studies have focused importance on periodizing carbohydrate intake based on, among other factors, the goal and demand of training or competition. This calls for a much more personalized approach to carbohydrate recommendations that could be further supported through future research and technological innovation (e.g., continuous glucose monitoring). Despite more than a century of investigations into carbohydrate nutrition, exercise metabolism and endurance performance, there are numerous new important discoveries, both from an applied and mechanistic perspective, on the horizon.


Assuntos
Desempenho Atlético , Automonitorização da Glicemia , Humanos , Glicemia , Atletas , Carboidratos da Dieta/metabolismo , Resistência Física
7.
Eur J Appl Physiol ; 122(11): 2393-2401, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35951130

RESUMO

PURPOSE: This study aimed to investigate whether carbohydrate ingestion during 3 h long endurance exercise in highly trained cyclists at a rate of 120 g h-1 in 0.8:1 ratio between fructose and glucose-based carbohydrates would result in higher exogenous and lower endogenous carbohydrate oxidation rates as compared to ingestion of 90 g h-1 in 1:2 ratio, which is the currently recommended approach for exercise of this duration. METHODS: Eleven male participants (V̇O2peak 62.6 ± 7 mL kg-1 min-1, gas exchange threshold (GET) 270 ± 17 W and Respiratory compensation point 328 ± 32 W) completed the study involving 4 experimental visits consisting of 3 h cycling commencing after an overnight fast at an intensity equivalent to 95% GET. During the trials they received carbohydrates at an average rate of 120 or 90 g h-1 in 0.8:1 or 1:2 fructose-maltodextrin ratio, respectively. Carbohydrates were naturally high or low in 13C stable isotopes enabling subsequent calculations of exogenous and endogenous carbohydrate oxidation rates. RESULTS: Exogenous carbohydrate oxidation rates were higher in the 120 g h-1 condition (120-180 min: 1.51 ± 0.22 g min-1) as compared to the 90 g h-1 condition (1.29 ± 0.16 g min-1; p = 0.026). Endogenous carbohydrate oxidation rates did not differ between conditions (2.15 ± 0.30 and 2.20 ± 0.33 g min-1 for 120 and 90 g h-1 conditions, respectively; p = 0.786). CONCLUSIONS: The results suggest that carbohydrate ingestion at 120 g h-1 in 0.8:1 fructose-maltodextrin ratio as compared with 90 g h-1 in 1:2 ratio offers higher exogenous carbohydrate oxidation rates but no additional sparing of endogenous carbohydrates. Further studies should investigate potential performance effects of such carbohydrate ingestion strategies.


Assuntos
Frutose , Resistência Física , Glicemia , Carboidratos da Dieta/farmacologia , Frutose/farmacologia , Glucose/farmacologia , Humanos , Masculino , Oxirredução , Polissacarídeos
8.
Nature ; 606(7915): 785-790, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35705806

RESUMO

Exercise confers protection against obesity, type 2 diabetes and other cardiometabolic diseases1-5. However, the molecular and cellular mechanisms that mediate the metabolic benefits of physical activity remain unclear6. Here we show that exercise stimulates the production of N-lactoyl-phenylalanine (Lac-Phe), a blood-borne signalling metabolite that suppresses feeding and obesity. The biosynthesis of Lac-Phe from lactate and phenylalanine occurs in CNDP2+ cells, including macrophages, monocytes and other immune and epithelial cells localized to diverse organs. In diet-induced obese mice, pharmacological-mediated increases in Lac-Phe reduces food intake without affecting movement or energy expenditure. Chronic administration of Lac-Phe decreases adiposity and body weight and improves glucose homeostasis. Conversely, genetic ablation of Lac-Phe biosynthesis in mice increases food intake and obesity following exercise training. Last, large activity-inducible increases in circulating Lac-Phe are also observed in humans and racehorses, establishing this metabolite as a molecular effector associated with physical activity across multiple activity modalities and mammalian species. These data define a conserved exercise-inducible metabolite that controls food intake and influences systemic energy balance.


Assuntos
Ingestão de Alimentos , Comportamento Alimentar , Obesidade , Fenilalanina , Condicionamento Físico Animal , Adiposidade/efeitos dos fármacos , Animais , Peso Corporal/efeitos dos fármacos , Diabetes Mellitus Tipo 2 , Modelos Animais de Doenças , Ingestão de Alimentos/fisiologia , Metabolismo Energético , Comportamento Alimentar/fisiologia , Glucose/metabolismo , Ácido Láctico/metabolismo , Camundongos , Obesidade/metabolismo , Obesidade/prevenção & controle , Fenilalanina/administração & dosagem , Fenilalanina/análogos & derivados , Fenilalanina/metabolismo , Fenilalanina/farmacologia , Condicionamento Físico Animal/fisiologia
9.
Eur J Appl Physiol ; 122(1): 93-102, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34562114

RESUMO

PURPOSE: Whole-body fat oxidation during exercise can be measured non-invasively during athlete profiling. Gaps in understanding exist in the relationships between fat oxidation during incremental fasted exercise and skeletal muscle parameters, endurance performance, and fat oxidation during prolonged fed-state exercise. METHODS: Seventeen endurance-trained males underwent a (i) fasted, incremental cycling test to assess peak whole-body fat oxidation (PFO), (ii) resting vastus lateralis microbiopsy, and (iii) 30-min maximal-effort cycling time-trial preceded by 2-h of fed-state moderate-intensity cycling to assess endurance performance and fed-state metabolism on separate occasions within one week. RESULTS: PFO (0.58 ± 0.28 g.min-1) was associated with vastus lateralis citrate synthase activity (69.2 ± 26.0 µmol.min-1.g-1 muscle protein, r = 0.84, 95% CI 0.58, 0.95, P < 0.001), CD36 abundance (16.8 ± 12.6 µg.g-1 muscle protein, rs = 0.68, 95% CI 0.31, 1.10, P = 0.01), pre-loaded 30-min time-trial performance (251 ± 51 W, r = 0.76, 95% CI 0.40, 0.91, P = 0.001; 3.2 ± 0.6 W.kg-1, r = 0.62, 95% CI 0.16, 0.86, P = 0.01), and fat oxidation during prolonged fed-state cycling (r = 0.83, 95% CI 0.57, 0.94, P < 0.001). Addition of PFO to a traditional model of endurance (peak oxygen uptake, power at 4 mmol.L-1 blood lactate concentration, and gross efficiency) explained an additional ~ 2.6% of variation in 30-min time-trial performance (adjusted R2 = 0.903 vs. 0.877). CONCLUSION: These associations suggest non-invasive measures of whole-body fat oxidation during exercise may be useful in the physiological profiling of endurance athletes.


Assuntos
Atletas , Antígenos CD36/metabolismo , Metabolismo dos Lipídeos , Músculo Esquelético/metabolismo , Resistência Física/fisiologia , Adulto , Citrato (si)-Sintase/metabolismo , Humanos , Masculino , Oxirredução , Consumo de Oxigênio/fisiologia
10.
J Appl Physiol (1985) ; 131(6): 1653-1662, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34734783

RESUMO

Mitochondria are critical to skeletal muscle contractile function and metabolic health. Short-term periods of step reduction (SR) are associated with alterations in muscle protein turnover and mass. However, the effects of SR on mitochondrial metabolism/muscle oxidative metabolism and insulin-mediated signaling are unclear. We tested the hypothesis that the total and/or phosphorylated protein content of key skeletal muscle markers of mitochondrial/oxidative metabolism, and insulin-mediated signaling would be altered over 7 days of SR in young healthy males. Eleven, healthy, recreationally active males (means ± SE, age: 22 ± 1 yr, BMI: 23.4 ± 0.7 kg·m2) underwent a 7-day period of SR. Immediately before and following SR, fasted-state muscle biopsy samples were acquired and analyzed for the assessment of total and phosphorylated protein content of key markers of mitochondrial/oxidative metabolism and insulin-mediated signaling. Daily step count was significantly reduced during the SR intervention (13,054 ± 833 to 1,192 ± 99 steps·day-1, P < 0.001). Following SR, there was a significant decline in maximal citrate synthase activity (fold change: 0.94 ± 0.08, P < 0.05) and a significant increase in the protein content of p-glycogen synthase (P-GSS641; fold change: 1.47 ± 0.14, P < 0.05). No significant differences were observed in the total or phosphorylated protein content of other key markers of insulin-mediated signaling, oxidative metabolism, mitochondrial function, or mitochondrial dynamics (all P > 0.05). These results suggest that short-term SR reduces the maximal activity of citrate synthase, a marker of mitochondrial content, without altering the total or phosphorylated protein content of key markers of skeletal muscle mitochondrial metabolism and insulin signaling in young healthy males.NEW & NOTEWORTHY Short-term (7 day) step reduction reduces the activity of citrate synthase without altering the total or phosphorylated protein content of key markers of skeletal muscle mitochondrial metabolism and insulin signaling in young healthy males.


Assuntos
Insulina , Músculo Esquelético , Respiração Celular , Citrato (si)-Sintase/metabolismo , Humanos , Insulina/metabolismo , Masculino , Músculo Esquelético/metabolismo , Estresse Oxidativo , Adulto Jovem
11.
BMC Public Health ; 21(1): 1333, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34229651

RESUMO

BACKGROUND: This mixed methods study explored how social media use informed physical activity and diet-related behaviours, and self-perceived Quality of Life (QoL) during COVID-19, and assessed the contextual factors that drive social media use for health-related behaviour change in diverse groups. During the COVID-19 lockdown periods there were reported changes to social media use and health behaviours, and this gave an opportunity to investigate potential relationships. METHODS: An explanatory sequential research design of two parts was used: (1) An online survey that assessed social media use in relation to physical activity levels, diet quality and QoL (n = 786; Mage 45.1 ± 19.1 (range 16-88) years; Female =69%); (2) 20 purposive focus groups (n = 69; Mage = 52.88 ± 18.45 years, Female n = 68%) to understand the contextual factors that drive social media use for health-related behaviour change. Descriptive and thematic analysis were conducted. RESULTS: Participants in this study reported that social media facilitated the self-management of behaviours related to physical activity, diet and QoL, through access to information to inform workouts and dietary quality, and the opportunities for interaction with peers, family members and within social groups. Contextual factors including work, home and lifestyle arrangements, pre-existing health-related knowledge and behaviours, and the perceived value of social media for health influenced the relationship between social media use and self-reported outcomes. Social media influencers, peers/family members, and official organisations influenced the application of health-related information accessed via social media. CONCLUSIONS: The evidence shows that participants were critical users of social media and were able to use social media to derive benefit for their health and wellbeing. Detailed guidance for those who use social media, as well as those who recommend and endorse social media content is required to maximise the potential of social media to support health behaviours. Future public health strategies and social media interventions should acknowledge diversity in contextual factors driving social media use for health behaviour change.


Assuntos
COVID-19 , Mídias Sociais , Controle de Doenças Transmissíveis , Dieta , Exercício Físico , Feminino , Humanos , Masculino , Qualidade de Vida , SARS-CoV-2
12.
J Appl Physiol (1985) ; 131(1): 376-387, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34043470

RESUMO

Altering dietary carbohydrate (CHO) intake modulates fuel utilization during exercise. However, there has been no systematic evaluation of metabolic responses to graded changes in short-term (< 1 wk) dietary CHO intake. Thirteen active men performed interval running exercise combined with isocaloric diets over 3 days before evaluation of metabolic responses to 60-min running at 65% V̇O2max on three occasions. Diets contained lower [LOW, 2.40 ± 0.66 g CHO·kg-1·day-1, 21.3 ± 0.5% of energy intake (EI)], moderate (MOD, 4.98 ± 1.31 g CHO·kg-1·day-1, 46.3 ± 0.7% EI), or higher (HIGH, 6.48 ± 1.56 g CHO·kg-1·day-1, 60.5 ± 1.6% EI) CHO. Preexercise muscle glycogen content was lower in LOW [54.3 ± 26.4 mmol·kg-1 wet weight (ww)] compared with MOD (82.6 ± 18.8 mmol·kg -1 ww) and HIGH (80.4 ± 26.0 mmol·kg-1 ww, P < 0.001; MOD vs. HIGH, P = 0.85). Whole body substrate oxidation, systemic responses, and muscle substrate utilization during exercise indicated increased fat and decreased CHO metabolism in LOW [respiratory exchange ratio (RER): 0.81 ± 0.01] compared with MOD (RER 0.86 ± 0.01, P = 0.0005) and HIGH (RER: 0.88 ± 0.01, P < 0.0001; MOD vs. HIGH, P = 0.14). Higher basal muscle expression of genes encoding proteins implicated in fat utilization was observed in LOW. In conclusion, muscle glycogen availability and subsequent metabolic responses to exercise were resistant to increases in dietary CHO intake from ∼5.0 to ∼6.5 g CHO·kg-1·day-1 (46% to 61% EI), while muscle glycogen, gene expression, and metabolic responses were sensitive to more marked reductions in CHO intake (∼2.4 g CHO·kg-1·day-1, ∼21% EI).NEW & NOTEWORTHY The data presented here suggest that metabolic responses to steady-state aerobic exercise are somewhat resistant to short-term changes in dietary carbohydrate (CHO) intake within the 5-6.5 g CHO·kg-1·day-1 [46-61% energy intake (EI)] range. In contrast, reduction in short-term dietary CHO intake to ∼2.4 g CHO·kg-1·day-1 (21% EI) evoked clear changes indicative of increased fat and decreased CHO metabolism during exercise.


Assuntos
Resistência Física , Corrida , Metabolismo dos Carboidratos , Carboidratos da Dieta/metabolismo , Exercício Físico , Glicogênio/metabolismo , Humanos , Masculino , Músculo Esquelético/metabolismo , Consumo de Oxigênio
13.
Physiol Rep ; 9(9): e14849, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33977674

RESUMO

Endurance athletes are frequently exposed to environmental heat stress during training. We investigated whether exposure to 33°C during training would improve endurance performance in temperate conditions and stimulate mitochondrial adaptations. Seventeen endurance-trained males were randomly assigned to perform a 3-week training intervention in 18°C (TEMP) or 33°C (HEAT). An incremental test and 30-min time-trial preceded by 2-h low-intensity cycling were performed in 18°C pre- and post-intervention, along with a resting vastus lateralis microbiopsy. Training was matched for relative cardiovascular demand using heart rates measured at the first and second ventilatory thresholds, along with a weekly "best-effort" interval session. Perceived training load was similar between-groups, despite lower power outputs during training in HEAT versus TEMP (p < .05). Time-trial performance improved to a greater extent in HEAT than TEMP (30 ± 13 vs. 16 ± 5 W, N = 7 vs. N = 6, p = .04), and citrate synthase activity increased in HEAT (fold-change, 1.25 ± 0.25, p = .03, N = 9) but not TEMP (1.10 ± 0.22, p = .22, N = 7). Training-induced changes in time-trial performance and citrate synthase activity were related (r = .51, p = .04). A group × time interaction for peak fat oxidation was observed (Δ 0.05 ± 0.14 vs. -0.09 ± 0.12 g·min-1 in TEMP and HEAT, N = 9 vs. N = 8, p = .05). Our data suggest exposure to moderate environmental heat stress during endurance training may be useful for inducing adaptations relevant to performance in temperate conditions.


Assuntos
Treino Aeróbico/métodos , Resposta ao Choque Térmico , Músculo Esquelético/fisiologia , Termotolerância , Adulto , Desempenho Atlético , Citrato (si)-Sintase/metabolismo , Humanos , Metabolismo dos Lipídeos , Masculino , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Oxirredução
14.
Curr Opin Clin Nutr Metab Care ; 24(4): 364-371, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33973552

RESUMO

PURPOSE OF REVIEW: The present review summarized evidence on the role of carbohydrates in recovery from exercise within the context of acute and chronic effects on metabolism and performance. RECENT FINDINGS: Recent studies demonstrate that, in contrast to recovery of muscle glycogen stores, the recovery of liver glycogen stores can be accelerated by the co-ingestion of fructose with glucose-based carbohydrates. Three recent studies suggest this can extend time-to-exhaustion during endurance exercise tests. However, periodically restricting carbohydrate intakes during recovery from some training sessions to slow the recovery of liver and muscle glycogen stores may, over time, result in a modest increase in the ability to oxidize fat during exercise in a fasted state. Whether this periodized strategy translates into a performance advantage in the fed state remains to be clearly demonstrated. SUMMARY: To maximize recovery of glycogen stores and the capacity to perform in subsequent endurance exercise, athletes should consider ingesting at least 1.2 g carbohydrate per kilogram body mass per hour - for the first few hours of recovery - as a mixture of fructose and glucose-based carbohydrates. However, if a goal is increased capacity for fat oxidation, athletes should consider restricting carbohydrate intakes during recovery from some key training sessions. VIDEO ABSTRACT: http://links.lww.com/COCN/A15.


Assuntos
Carboidratos da Dieta , Resistência Física , Ingestão de Alimentos , Exercício Físico , Glicogênio , Humanos , Músculo Esquelético
15.
Int J Sport Nutr Exerc Metab ; 31(3): 209-216, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33601335

RESUMO

The impact of resistance exercise frequency on muscle protein synthesis rates remains unknown. The aim of this study was to compare daily myofibrillar protein synthesis rates over a 7-day period of low-frequency (LF) versus high-frequency (HF) resistance exercise training. Nine young men (21 ± 2 years) completed a 7-day period of habitual physical activity (BASAL). This was followed by a 7-day exercise period of volume-matched, LF (10 × 10 repetitions at 70% one-repetition maximum, once per week) or HF (2 × 10 repetitions at ∼70% one-repetition maximum, five times per week) resistance exercise training. The participants had one leg randomly allocated to LF and the other to HF. Skeletal muscle biopsies and daily saliva samples were collected to determine myofibrillar protein synthesis rates using 2H2O, with intracellular signaling determined using Western blotting. The myofibrillar protein synthesis rates did not differ between the LF (1.46 ± 0.26%/day) and HF (1.48 ± 0.33%/day) conditions over the 7-day exercise training period (p > .05). There were no significant differences between the LF and HF conditions over the first 2 days (1.45 ± 0.41%/day vs. 1.25 ± 0.46%/day) or last 5 days (1.47 ± 0.30%/day vs. 1.50 ± 0.41%/day) of the exercise training period (p > .05). Daily myofibrillar protein synthesis rates were not different from BASAL at any time point during LF or HF (p > .05). The phosphorylation status and total protein content of selected proteins implicated in skeletal muscle ribosomal biogenesis were not different between conditions (p > .05). Under the conditions of the present study, resistance exercise training frequency did not modulate daily myofibrillar protein synthesis rates in young men.


Assuntos
Proteínas Musculares/biossíntese , Miofibrilas/metabolismo , Treinamento Resistido , Actigrafia/estatística & dados numéricos , Biópsia , Óxido de Deutério/metabolismo , Dieta , Ingestão de Energia , Humanos , Perna (Membro) , Masculino , Músculo Esquelético/crescimento & desenvolvimento , Músculo Esquelético/metabolismo , Fosforilação , Distribuição Aleatória , Proteínas Ribossômicas/biossíntese , Transdução de Sinais , Fatores de Tempo , Adulto Jovem
16.
J Physiol ; 599(5): 1513-1531, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33492681

RESUMO

KEY POINTS: Acute nicotinamide riboside (NR) supplementation does not alter substrate metabolism at rest, during or in recovery from endurance exercise. NR does not alter NAD+ -sensitive signalling pathways in human skeletal muscle. NR supplementation and acute exercise influence the NAD+ metabolome. ABSTRACT: Oral supplementation of the NAD+ precursor nicotinamide riboside (NR) has been reported to alter metabolism alongside increasing sirtuin (SIRT) signalling and mitochondrial biogenesis in rodent skeletal muscle. However, whether NR supplementation can elicit a similar response in human skeletal muscle is unclear. This study assessed the effect of 7-day NR supplementation on whole-body metabolism and exercise-induced mitochondrial biogenic signalling in skeletal muscle. Eight male participants (age: 23 ± 4 years, V̇O2peak 46.5 ± 4.4 ml kg-1  min-1 ) received 1 week of NR or cellulose placebo (PLA) supplementation (1000 mg day-1 ). Muscle biopsies were collected from the medial vastus lateralis prior to supplementation and pre-, immediately post- and 3 h post-exercise (1 h of 60% Wmax cycling) performed following the supplementation period. There was no effect of NR supplementation on substrate utilisation at rest or during exercise or on skeletal muscle mitochondrial respiration. Global acetylation, auto-PARylation of poly ADP-ribose polymerase 1 (PARP1), acetylation of Tumour protein 53 (p53)Lys382 and Manganese superoxide dismutase (MnSOD)Lys122 were also unaffected by NR supplementation or exercise. NR supplementation did not increase skeletal muscle NAD+ concentration, but it did increase the concentration of deaminated NAD+ precursors nicotinic acid riboside (NAR) and nicotinic acid mononucleotide (NAM) and methylated nicotinamide breakdown products (Me2PY and Me4PY), demonstrating the skeletal muscle bioavailability of NR supplementation. In summary, 1 week of NR supplementation does not alter whole-body metabolism or skeletal muscle signal transduction pathways implicated in the mitochondrial adaptation to endurance exercise.


Assuntos
Músculo Esquelético , Niacinamida , Suplementos Nutricionais , Exercício Físico , Masculino , NAD , Niacinamida/análogos & derivados , Compostos de Piridínio
17.
Eur J Sport Sci ; 21(2): 213-223, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32052709

RESUMO

Training with low carbohydrate availability enhances endurance training adaptations but training volume may be compromised. We explored whole-body metabolism and performance with delayed carbohydrate feeding during exercise undertaken following acute sleep-low training. We hypothesised this strategy would not suppress fat oxidation and would maintain exercise performance. The study involved three experimental trials and included 9 men and 1 woman (⩒O2peak = 58.8 ± 5.5 mL kg-1 min-1). Each trial started in the afternoon with an exhaustive cycling protocol. The following morning 1-h of steady-state cycling (SS) was followed by a time trial (TT). Carbohydrates (CHO) were not ingested in recovery from exhaustive exercise or during next day exercise in the Placebo trial (PLA); CHO were not ingested during recovery but were fed (15 g every ∼15-min) from 30-min into SS and continued during the TT in the delayed feeding trial (DELAY); CHO were provided during recovery (1.2 g/kg/h for 7 h) and next day exercise (as in DELAY) in a third condition (CHO). Exercise metabolism was assessed using indirect calorimetry and blood sampling. Fat oxidation rates during SS were similar in PLA (0.83 ± 0.17 g/min) and DELAY (0.78 ± 0.14 g/min) (p > 0.05) and higher than CHO (0.57 ± 0.27 g/min) (p < 0.05). There were no significant differences in TT performance (49.1 ± 10.7, 43.4 ± 7.6, 41.0 ± 7.9 min in PLA, DELAY and CHO, respectively; p > 0.05). Delayed carbohydrate feeding could be a strategy to maintain high-fat oxidation rates typically associated with exercise undertaken after the sleep-low approach to training but the acute performance effects remain inconclusive.


Assuntos
Tecido Adiposo/metabolismo , Carboidratos da Dieta/administração & dosagem , Metabolismo Energético/fisiologia , Exercício Físico/fisiologia , Resistência Física/fisiologia , Adulto , Biomarcadores/sangue , Glicemia/fisiologia , Calorimetria Indireta , Teste de Esforço , Ácidos Graxos não Esterificados/sangue , Feminino , Voluntários Saudáveis , Humanos , Insulina/sangue , Ácido Láctico/sangue , Masculino , Adulto Jovem
18.
Eur J Sport Sci ; 21(8): 1156-1164, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32814506

RESUMO

The benefits of high exogenous glucose availability for endurance exercise performance are well-established. Exogenous glucose oxidation rates are thought to be limited by intestinal glucose transport. Extracellular calcium in rodent intestine increases the translocation of the intestinal glucose transporter GLUT2 which, if translated to humans, could increase the capacity for exogenous glucose availability during exercise. Therefore, this pilot study aimed to explore the effect of calcium co-ingestion during endurance exercise on exogenous glucose oxidation in healthy men. Eight healthy men cycled for 2 h at 50% peak power output, ingesting either 1.2 g min-1 dextrose alone (GLU) or with the addition of 2000 mg calcium (GLU + CAL), in a randomised crossover design. Expired breath samples were collected to determine whole-body and exogenous glucose oxidation. Peak exogenous glucose oxidation during GLU was 0.83 ± 0.15 g min-1, and was not enhanced during GLU + CAL (0.88 ± 0.11 g min-1, p = 0.541). The relative contributions of exogenous carbohydrate (19 ± 3% vs. 20 ± 2%, p = 0.434), endogenous carbohydrate (65 ± 3% vs. 65 ± 3%, p = 0.822) and fat (16 ± 3% vs. 15 ± 3%, p = 0.677) to total substrate utilisation did not differ between trials. These results suggest the addition of calcium to glucose ingestion, at saturating glucose ingestion rates, does not appear to alter exogenous glucose oxidation during endurance exercise in healthy men.


Assuntos
Cálcio/administração & dosagem , Bebidas Energéticas , Glucose/administração & dosagem , Glucose/metabolismo , Resistência Física/fisiologia , Adolescente , Adulto , Glicemia/metabolismo , Testes Respiratórios , Cálcio/sangue , Estudos Cross-Over , Humanos , Absorção Intestinal , Ácido Láctico/sangue , Masculino , Oxirredução , Projetos Piloto , Método Simples-Cego , Adulto Jovem
19.
Front Nutr ; 7: 82, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32582755

RESUMO

Background: Current sports nutrition guidelines recommend athletes ingest carbohydrates at 1.0-1.2 g·kg-1·h-1 to optimize repletion of muscle glycogen during short-term recovery from endurance exercise. However, they do not provide specific advice on monosaccharides (e.g., fructose or glucose) other than to ingest carbohydrates of moderate to high glycaemic index. Recent evidence suggests that combined ingestion of fructose and glucose in recovery leads to enhanced liver glycogen synthesis and that this translates into improvement of subsequent endurance capacity. Purpose: The purpose of the present study was to investigate whether consuming a combination of fructose and glucose as opposed to glucose alone during short-term recovery (i.e., 4 h) from exhaustive exercise would also improve subsequent pre-loaded cycle time trial (TT) performance. Methods: Eight participants (seven men, one woman; V ∙ O2peak: 56.8 ± 5.0 mLO2·min-1·kg-1; Wmax: 352 ± 41 W) participated in this randomized double-blind study. Each experimental session involved a glycogen reducing exercise bout in the morning, a 4-h recovery period and 1-h of steady state (SS) exercise at 50% Wmax followed by a ~40-min simulated TT. During recovery carbohydrates were ingested at a rate of 1.2 g·kg-1·h-1 in the form of fructose and maltodextrin (FRU + MD) or dextrose and maltodextrin (GLU + MD) (both in 1:1.5 ratio). Substrate oxidation rates, including ingested carbohydrate oxidation, were determined during the steady state (SS). Blood samples were collected during recovery, during the SS exercise and at the end of the TT for determination of glucose and lactate concentrations. Results: There were no differences in TT performance [37.41 ± 3.45 (GLU + MD); 37.96 ± 5.20 min (FRU + MD), p = 0.547]. During the first 45-min of SS oxidation of ingested carbohydrates was greater in FRU + MD (1.86 ± 0.41 g-1·min-1 and 1.51 ± 0.37 g-1·min-1 for FRU + MD and GLU + MD, respectively; time x condition interaction p = 0.003) and there was a trend toward higher overall carbohydrate oxidation rates in FRU + MD (2.50 ± 0.36 g-1·min-1 and 2.31 ± 0.37 g-1·min-1 for FRU + MD and GLU + MD, respectively; p = 0.08). However, at 60-min of SS, differences in substrate oxidation disappeared. Conclusion: Ingestion of combined fructose and glucose compared to glucose only during recovery from an exhaustive exercise bout increased the ingested carbohydrate oxidation rate during subsequent exercise. Under the conditions studied, subsequent TT performance was not improved with fructose-glucose.

20.
Med Sci Sports Exerc ; 52(12): 2663-2672, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32520875

RESUMO

PURPOSE: Ingesting readily oxidized carbohydrates (CHO) such as sucrose during exercise can improve endurance performance. Whether lactose can be utilized as a fuel source during exercise is unknown. The purpose of this study was to investigate the metabolic response to lactose ingestion during exercise, compared with sucrose or water. METHODS: Eleven participants (age, 22 ± 4 yr; V[Combining Dot Above]O2peak, 50.9 ± 4.7 mL·min·kg) cycled at 50% Wmax for 150 min on five occasions. Participants ingested CHO beverages (lactose or sucrose; 48 g·h, 0.8 g·min) or water throughout exercise. Total substrate and exogenous CHO oxidation was estimated using indirect calorimetry and stable isotope techniques (naturally high C-abundance CHO ingestion). Naturally low C-abundance CHO trials were conducted to correct background shifts in breath CO2 production. Venous blood samples were taken to determine plasma glucose, lactate, and nonesterified fatty acid concentrations. RESULTS: Mean exogenous CHO oxidation rates were comparable with lactose (0.56 ± 0.19 g·min) and sucrose (0.61 ± 0.10 g·min; P = 0.49) ingestion. Endogenous CHO oxidation contributed less to energy expenditure in lactose (38% ± 14%) versus water (50% ± 11%, P = 0.01) and sucrose (50% ± 7%, P ≤ 0.05). Fat oxidation was higher in lactose (42% ± 8%) than in sucrose (28% ± 6%; P ≤ 0.01); CHO conditions were lower than water (50% ± 11%; P ≤ 0.05). Plasma glucose was higher in lactose and sucrose than in water (P ≤ 0.01); plasma lactate was higher in sucrose than in water (P ≤ 0.01); plasma nonesterified fatty acids were higher in water than in sucrose (P ≤ 0.01). CONCLUSIONS: Lactose and sucrose exhibited similar exogenous CHO oxidation rates during exercise at moderate ingestion rates. Compared with sucrose ingestion, lactose resulted in higher fat and lower endogenous CHO oxidation.


Assuntos
Carboidratos da Dieta/metabolismo , Sacarose Alimentar/metabolismo , Exercício Físico/fisiologia , Lactose/metabolismo , Glicemia/metabolismo , Calorimetria Indireta , Dióxido de Carbono/metabolismo , Ácidos Graxos não Esterificados/sangue , Feminino , Humanos , Lactose/sangue , Masculino , Oxirredução , Consumo de Oxigênio , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA