RESUMO
Neoplasia and associated tissue biomarkers in benthic fishes are commonly used to characterize effects of contaminated sediments in aquatic ecosystems. However, these fish are often migratory or partially-migratory, and thus assessing the effect of location-specific contamination is challenging because the fish will have a complex exposure history. We determined liver and skin neoplasia prevalence for a benthic, partially-migratory fish, white sucker (Catostomus commersonii), and used carbon and nitrogen stable isotope ratios to determine the diet contribution associated with areas of contaminated sediments within the urbanized portion of the St. Louis River. We then tested which factors were significantly related to neoplasia prevalence, including age, sex, and the percent diet obtained from contaminated areas within the St. Louis River relative to Lake Superior, the reference area. Overall, the prevalence of contaminant-related internal and external tumors was low, <5%. For skin neoplasia prevalence, both sex and age were significant factors, whereas location-specific diet contribution based on stable isotope analysis was not a significant factor. For liver neoplasia prevalence, only age was a significant factor. Nevertheless, for all contaminants measured (polychlorinated biphenyls [PCBs], polychlorinated dibenzodioxins [PCDDs], and polychlorinated dibenzofurans [PCDFs]), there was a significant, negative correlation between liver tissue concentration and Lake Superior diet contribution, confirming that the St. Louis River is the primary source of contaminant exposure. The research highlights the complexity of exposure to location-specific contaminants and potentially infectious agents associated with neoplasia at urban, contaminated sites in the Great Lakes, and elsewhere. It also demonstrates the need to determine the full set of risk factors across life-stages, habitats, and biological endpoints.