RESUMO
Declining body size is believed to be a universal response to climate warming and has been documented in numerous studies of marine and anadromous fishes. The Salmonidae are a family of coldwater fishes considered to be among the most sensitive species to climate warming; however, whether the shrinking body size response holds true for freshwater salmonids has yet to be examined at a broad spatial scale. We compiled observations of individual fish lengths from long-term surveys across the Northern Hemisphere for 12 species of freshwater salmonids and used linear mixed models to test for spatial and temporal trends in body size (fish length) spanning recent decades. Contrary to expectations, we found a significant increase in length overall but with high variability in trends among populations and species. More than two-thirds of the populations we examined increased in length over time. Secondary regressions revealed larger-bodied populations are experiencing greater increases in length than smaller-bodied populations. Mean water temperature was weakly predictive of changes in body length but overall minimal influences of environmental variables suggest that it is difficult to predict an organism's response to changing temperatures by solely looking at climatic factors. Our results suggest that declining body size is not universal, and the response of fishes to climate change may be largely influenced by local factors. It is important to know that we cannot assume the effects of climate change are predictable and negative at a large spatial scale.
Assuntos
Salmonidae , Animais , Peixes , Mudança Climática , Temperatura , Água Doce , Tamanho CorporalRESUMO
Global environmental change is challenging species with novel conditions, such that demographic and evolutionary trajectories of populations are often shaped by the exchange of organisms and alleles across landscapes. Current ecological theory predicts that random networks with dispersal shortcuts connecting distant sites can promote persistence when there is no capacity for evolution. Here, we show with an eco-evolutionary model that dispersal shortcuts across environmental gradients instead hinder persistence for populations that can evolve because long-distance migrants bring extreme trait values that are often maladaptive, short-circuiting the adaptive response of populations to directional change. Our results demonstrate that incorporating evolution and environmental heterogeneity fundamentally alters theoretical predictions regarding persistence in ecological networks.
Assuntos
Evolução Biológica , Ecossistema , Modelos Biológicos , Fenótipo , Dinâmica PopulacionalRESUMO
Current approaches for biodiversity conservation and management focus on sustaining high levels of diversity among species to maintain ecosystem function. We show that the diversity among individuals within a single population drives function at the ecosystem scale. Specifically, nutrient supply from individual fish differs from the population average >80% of the time, and accounting for this individual variation nearly doubles estimates of nutrients supplied to the ecosystem. We test how management (i.e., selective harvest regimes) can alter ecosystem function and find that strategies targeting more active individuals reduce nutrient supply to the ecosystem up to 69%, a greater effect than body size-selective or nonselective harvest. Findings show that movement behavior at the scale of the individual can have crucial repercussions for the functioning of an entire ecosystem, proving an important challenge to the species-centric definition of biodiversity if the conservation and management of ecosystem function is a primary goal.
Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Peixes/fisiologia , Modelos Biológicos , Áreas Alagadas , AnimaisRESUMO
In light of recent recoveries of marine mammal populations worldwide and heightened concern about their impacts on marine food webs and global fisheries, it has become increasingly important to understand the potential impacts of large marine mammal predators on prey populations and their life-history traits. In coastal waters of the northeast Pacific Ocean, marine mammals have increased in abundance over the past 40 to 50 y, including fish-eating killer whales that feed primarily on Chinook salmon. Chinook salmon, a species of high cultural and economic value, have exhibited marked declines in average size and age throughout most of their North American range. This raises the question of whether size-selective predation by marine mammals is generating these trends in life-history characteristics. Here we show that increased predation since the 1970s, but not fishery selection alone, can explain the changes in age and size structure observed for Chinook salmon populations along the west coast of North America. Simulations suggest that the decline in mean size results from the selective removal of large fish and an evolutionary shift toward faster growth and earlier maturation caused by selection. Our conclusion that intensifying predation by fish-eating killer whales contributes to the continuing decline in Chinook salmon body size points to conflicting management and conservation objectives for these two iconic species.
RESUMO
Watersheds are complex mosaics of habitats whose conditions vary across space and time as landscape features filter overriding climate forcing, yet the extent to which the reliability of ecosystem services depends on these dynamics remains unknown. We quantified how shifting habitat mosaics are expressed across a range of spatial scales within a large, free-flowing river, and how they stabilize the production of Pacific salmon that support valuable fisheries. The strontium isotope records of ear stones (otoliths) show that the relative productivity of locations across the river network, as both natal- and juvenile-rearing habitat, varies widely among years and that this variability is expressed across a broad range of spatial scales, ultimately stabilizing the interannual production of fish at the scale of the entire basin.
Assuntos
Conservação dos Recursos Naturais/métodos , Ecossistema , Pesqueiros , Oncorhynchus , Rios , Animais , Clima , Membrana dos OtólitosRESUMO
Predator-prey interactions shape ecosystem structure and function, potentially limiting the productivity of valuable species. Simultaneously, stochastic environmental forcing affects species productivity, often through unknown mechanisms. The interacting effects of trophic and environmental conditions complicate management of exploited ecosystems and have motivated calls for more holistic management via ecosystem-based approaches, yet the limitations to these approaches are not widely appreciated. The Chignik salmon fishery in Alaska is managed to achieve maximum sustainable yield for sockeye salmon, though research suggests that predation by less economically valuable, and thus not targeted, coho salmon during juvenile rearing limits the productivity of sockeye salmon. We examined the relationship between historical sockeye salmon recruitment and coho salmon abundance observed in the Chignik system and could not detect a clear effect of coho salmon abundance on sockeye salmon productivity, given existing data. Using simulation models, we examined the probability of detecting a known predation effect on sockeye salmon recruitment in the presence of observation error in coho salmon abundance and stochasticity in sockeye salmon recruitment. Increased recruitment stochasticity reduced the ability to detect predator effects in recruitment, an effect further strengthened when low frequency environmental variation was added to the system. Further, increased observation error biased estimates of predator effects towards zero. Thus, in systems with high observation error on predator abundances, estimates of predation effects will be substantially weaker than true effects. We examined the effects of stochasticity on the ability of an adaptive management program to learn about ecosystem structure and detect an effect of management actions intended to release a prey species from its predators. Simulation models revealed that even under scenarios of large predation effects on sockeye salmon, stochastic recruitment masked detection of an effect of increased coho salmon harvest for nearly a decade. These results highlight the challenges inherent in ecosystem-based management of predator-prey systems due to mismatched timescales of ecosystem dynamics and the willingness of stakeholders to risk losses in order to test uncertain hypotheses. It is critical for stakeholders considering EBFM (ecosystem-based fisheries management) and adaptive management strategies to be aware of the potential timelines of perceiving ecosystem change.