Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 9(23): eade9557, 2023 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-37285420

RESUMO

To what extent do extractive and industrial development pressures affect Indigenous Peoples' lifeways, lands, and rights globally? We analyze 3081 environmental conflicts over development projects to quantify Indigenous Peoples' exposure to 11 reported social-environmental impacts jeopardizing the United Nations Declaration on the Rights of Indigenous Peoples. Indigenous Peoples are affected in at least 34% of all documented environmental conflicts worldwide. More than three-fourths of these conflicts are caused by mining, fossil fuels, dam projects, and the agriculture, forestry, fisheries, and livestock (AFFL) sector. Landscape loss (56% of cases), livelihood loss (52%), and land dispossession (50%) are reported to occur globally most often and are significantly more frequent in the AFFL sector. The resulting burdens jeopardize Indigenous rights and impede the realization of global environmental justice.


Assuntos
Meio Ambiente , Desenvolvimento Industrial , Humanos , Combustíveis Fósseis , Povos Indígenas , Agricultura
2.
Nanomaterials (Basel) ; 13(3)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36770389

RESUMO

Silver nanoparticles (AgNPs) have been extensively studied during recent decades as antimicrobial agents. However, their stability and antibacterial activity over time have yet to be sufficiently studied. In this work, AgNPs were coated with different stabilizers (naproxen and diclofenac and 5-chlorosalicylic acid) in different concentrations. The suspensions of nanostructures were characterized by transmission electron microscopy, UV-Vis and FT-IR spectroscopic techniques. The antibacterial activity as a function of time was determined through microbiological studies against Staphylococcus aureus. The AgNPs show differences in stabilities when changing the coating agent and its concentration. This fact could be a consequence of the difference in the nature of the interaction between the stabilizer and the surface of the NPs, which were evaluated by FT-IR spectroscopy. In addition, an increase in the size of the nanoparticles was observed after 30 days, which could be related to an Ostwald maturation phenomenon. This result raises new questions about the role that stabilizers play on the surface of NPs, promoting size change in NPs. It is highly probable that the stabilizer functions as a growth controller of the NPs, thus determining an effect on their biological properties. Finally, the antibacterial activity was evaluated over time against the bacterium Staphylococcus aureus. The results showed that the protective or stabilizing agents can play an important role in the antibacterial capacity, the control of the size of the AgNPs and additionally in the stability over time.

3.
Polymers (Basel) ; 14(23)2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36501616

RESUMO

In this study, the effect of the recycling process and copper particle incorporation on virgin and recycled pellet HDPE were investigated by thermo-chemical analysis, mechanical characterization, and antibacterial analysis. Copper particles were added to pellet HDPE, virgin and recycled, using a tabletop single screw extruder. Some copper particles, called copper nano-particles (Cu-NPs), had a spherical morphology and an average particle size near 20 nm. The others had a cubic morphology and an average particle size close to 300 nm, labeled copper nano-cubes (Cu-NCs). The thermo-chemical analysis revealed that the degree of crystallization was not influenced by the recycling process: 55.38 % for virgin HDPE and 56.01% for recycled HDPE. The degree of crystallization decreased with the addition of the copper particles. Possibly due to a modification in the structure, packaging organization, and crystalline ordering, the recycled HDPE reached a degree of crystallization close to 44.78% with 0.5 wt.% copper nano-particles and close to 36.57% for the recycled HDPE modified with 0.7 wt.% Cu-NCs. Tensile tests revealed a slight reduction in the tensile strength related to the recycling process, being close to 26 MPa for the virgin HDPE and 15.99 MPa for the recycled HDPE, which was improved by adding copper particles, which were near 25.39 MPa for 0.7 wt.% copper nano-cubes. Antibacterial analysis showed a reduction in the viability of E. coli in virgin HDPE samples, which was close to 8% for HDPE containing copper nano-particles and lower than 2% for HDPE having copper nano-cubes. In contrast, the recycled HDPE revealed viability close to 95% for HDPE with copper nano-particles and nearly 50% for HDPE with copper nano-cubes. The viability of S. aureus for HDPE was lower than containing copper nano-particles and copper nano-cubes, which increased dramatically close to 80% for recycled HDPE with copper nano-particles 80% and 75% with copper nano-cubes.

4.
Front Bioeng Biotechnol ; 9: 749057, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34938720

RESUMO

The influence of pH on the electrochemical behavior of hydrogen peroxide in the presence of Pseudomonas aeruginosa was investigated using electrochemical techniques. Cyclic and square wave voltammetry were used to monitor the enzymatic activity. A modified cobalt phthalocyanine (CoPc) carbon electrode (OPG), a known catalyst for reducing O2 to H2O2, was used to detect species resulting from the enzyme activity. The electrolyte was a sterilized aqueous medium containing Mueller-Hinton (MH) broth. The open-circuit potential (OCP) of the Pseudomonas aeruginosa culture in MH decreased rapidly with time, reaching a stable state after 4 h. Peculiarities in the E / I response were observed in voltammograms conducted in less than 4 h of exposure to the culture medium. Such particular E/I responses are due to the catalase's enzymatic action related to the conversion of hydrogen peroxide to oxygen, confirming the authors' previous findings related to the behavior of other catalase-positive microorganisms. The enzymatic activity exhibits maximum activity at pH 7.5, assessed by the potential at which oxygen is reduced to hydrogen peroxide. At higher or lower pHs, the oxygen reduction reaction (ORR) occurs at higher overpotentials, i.e., at more negative potentials. In addition, and to assess the influence of bacterial adhesion on the electrochemical behavior, measurements of the bacterial-substrate metal interaction were performed at different pH using atomic force microscopy.

5.
Bioelectrochemistry ; 136: 107622, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32784103

RESUMO

Ti-6Al-4V alloy has been widely investigated for biomedical applications due to its low density, high specific strength, and favorable corrosion resistance. However, some reported failures have imposed a challenge to improve bone regeneration and fixation, as well as antibacterial properties. A further opportunity for solving this problem is the introduction of porosity. However, this can induce metallic release and corrosion product formation. In this work, a Ti-6Al-4V alloy was exposed to Hank's solution, sterilized and inoculated with Staphylococcus aureus at 37 °C. Surface analysis was carried out by SEM-EDS and XPS. Electrochemical measurements were also performed using chronopotentiometry at open circuit potential, polarization curves, and electrochemical impedance spectroscopy. After exposure, FE-SEM showed some colonies of S. aureus on the sample with 22% porosity. However, XPS analysis revealed that the presence of bacterium influenced the composition of the oxide layer, even more drastically with the increase in added porosity. Moreover, the impedance analysis showed De Levie's behavior, revealing a reduction of pore resistance and modulus of the impedance in the low frequency range in inoculated medium, and polarization curves showed that the passivity potential range was decreased, whereas the passivity current increased in the presence of the S. aureus.


Assuntos
Ligas/química , Técnicas Eletroquímicas/métodos , Staphylococcus aureus/fisiologia , Titânio/química , Espectroscopia Dielétrica , Microscopia Eletrônica de Varredura , Espectroscopia Fotoeletrônica , Porosidade , Staphylococcus aureus/ultraestrutura
6.
Front Microbiol ; 10: 337, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30863385

RESUMO

Staphylococcus aureus is a serious human pathogen that is highly adaptive to environmental conditions and rapidly develops antibiotic resistance. The use of efflux pumps to reduce antibiotic concentrations at the intracellular level is one of the main mechanisms by which bacteria develop antibiotic resistance. The management of efflux pumps, specifically NorA, which is expressed by S. aureus strains, is a valuable strategy for restoring susceptibility in strains resistant to antibacterial agents. In recent years, many studies have focused on searching for natural substances that can reverse efflux pump-mediated resistance in S. aureus. Extracts and compounds obtained from plants can be efficient efflux pump inhibitors (EPIs) and represent a potentially patient-friendly strategy for controlling S. aureus. In the present study, we evaluated the ability of essential oils, petroleum ether extracts, dichloromethane extract (DCME) and six compounds isolated from the heartwood of Pilgerodendron uviferum (Cupressaceae) and two synthetic derivatives to inhibit efflux in NorA pumps in the following three S. aureus strains: K2378, which overexpressed the norA gene (norA++), K1902 (norA-deleted, ΔnorA) and the parental strain, NCTC 8325-4. Efflux activity was evaluated using a fluorometric method that measured the accumulation of the universal efflux pump substrate ethidium bromide (EtBr). Only DCME and the compounds 15-copaenol and epi-cubenol inhibited EtBr efflux by K2378. Even the lowest concentration of 15-copaenol exhibited a stronger inhibitory effect than carbonyl cyanide m-chlorophenyl hydrazone on EtBr efflux by K2378. 15-copaenal only showed inhibition of EtBr efflux in K2378 cells at 125 µg/mL, but not superior to the control inhibitor and 15-copaenyl acetate exerted no intrinsic EPI activity against K2378. Fractional inhibitory concentration index (FICI) values obtained in the checkerboard assays, indicated that all combinations between DCME, epi-cubenol and 15-copaenol, and tested antibiotics showed a synergistic effect in wild type, norA ++ and ΔnorA strains. Moreover, those were not toxic for the HeLa cell line at concentrations in which the synergistic effect and inhibitory activity of efflux pumps was determined. Other extracts and compounds obtained from P. uviferum did not display EtBr efflux-inhibiting activity against the evaluated S. aureus strains.

7.
J Photochem Photobiol B ; 193: 100-108, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30826583

RESUMO

Silver nanoparticles (AgNPs) have been widely recognized as antibacterial agents. However, its stability and activity over time have been poorly studied. In this work, the properties and characteristics of differently stabilized AgNPs were evaluated during a span of time. The surface capping agents were diclofenac (d), and ketorolac (k), which currently are used as anti-inflammatory in human medicine. On evaluating the size variation over time, it was observed that the AgNPs-k are the most stable, unlike the non-capped nanoparticles agglomerate and precipitate. UV-Vis spectroscopy analysis showed that the absorbance during time decreases for the three types of nanoparticles, but the decrease is less marked for the two types of anti-inflammatory-capped AgNPs. The rapid loss of the optical prop- erties of bare AgNPs, is mainly due to oxidation, agglomeration, and precipitation of this nanoparticles. The potential cytotoxicity of the AgNPs, evaluated through the formation of the superoxide anion using XXT, showed that both, AgNPs-k and AgNPs-d, generate the radical anion when the samples are irradiated with UV light at 365 nm. This effect appears associated with the capping agents, since the bare nanoparticles did not promote the formation of the superoxide anion. The antibacterial activity of the AgNPs throughout time, against two microorganisms (Escherichia coli and Staphylococcus aureus), was also evaluated. The results showed that capping agents played a decisive role in the antibacterial ability of AgNPs and also in enhancing the antibacterial activity over time.


Assuntos
Antibacterianos/química , Anti-Inflamatórios/química , Nanopartículas Metálicas/química , Prata/química , Superóxidos/metabolismo , Ânions/química , Antibacterianos/farmacologia , Diclofenaco/química , Difusão Dinâmica da Luz , Escherichia coli/efeitos dos fármacos , Cetorolaco/química , Ligantes , Nanopartículas Metálicas/toxicidade , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Transmissão , Espectrofotometria , Staphylococcus aureus/efeitos dos fármacos , Raios Ultravioleta
8.
Molecules ; 23(7)2018 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-29973523

RESUMO

The antibacterial effects against Staphylococcus epidermidis of five silver carboxylate complexes with anti-inflammatory ligands were studied in order to analyze and compare them in terms of stability (in solution and after exposure to UV light), and their antibacterial and morphological differences. Four effects of the Ag-complexes were evidenced by transmission electronic microscopy (TEM) and scanning electronic microscopy (SEM): DNA condensation, membrane disruption, shedding of cytoplasmic material and silver compound microcrystal penetration of bacteria. 5-Chlorosalicylic acid (5Cl) and sodium 4-aminosalicylate (4A) were the most effective ligands for synthesizing silver complexes with high levels of antibacterial activity. However, Ag-5Cl was the most stable against exposure UV light (365 nm). Cytotoxic effects were tested against two kinds of eukaryotic cells: murine fibroblast cells (T10 1/2) and human epithelial ovarian cancer cells (A2780). The main objective was to identify changes in their antibacterial properties associated with potential decomposition and the implications for clinical applications.


Assuntos
Antibacterianos/síntese química , Complexos de Coordenação/síntese química , Prata/química , Staphylococcus epidermidis/efeitos dos fármacos , Ácidos Aminossalicílicos/química , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Linhagem Celular , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Estabilidade de Medicamentos , Humanos , Camundongos , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Salicilatos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA