Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Nat Commun ; 14(1): 8373, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38102140

RESUMO

Rhabdomyosarcomas (RMS) are pediatric mesenchymal-derived malignancies encompassing PAX3/7-FOXO1 Fusion Positive (FP)-RMS, and Fusion Negative (FN)-RMS with frequent RAS pathway mutations. RMS express the master myogenic transcription factor MYOD that, whilst essential for survival, cannot support differentiation. Here we discover SKP2, an oncogenic E3-ubiquitin ligase, as a critical pro-tumorigenic driver in FN-RMS. We show that SKP2 is overexpressed in RMS through the binding of MYOD to an intronic enhancer. SKP2 in FN-RMS promotes cell cycle progression and prevents differentiation by directly targeting p27Kip1 and p57Kip2, respectively. SKP2 depletion unlocks a partly MYOD-dependent myogenic transcriptional program and strongly affects stemness and tumorigenic features and prevents in vivo tumor growth. These effects are mirrored by the investigational NEDDylation inhibitor MLN4924. Results demonstrate a crucial crosstalk between transcriptional and post-translational mechanisms through the MYOD-SKP2 axis that contributes to tumorigenesis in FN-RMS. Finally, NEDDylation inhibition is identified as a potential therapeutic vulnerability in FN-RMS.


Assuntos
Rabdomiossarcoma , Humanos , Carcinogênese/genética , Linhagem Celular Tumoral , Rabdomiossarcoma/genética , Rabdomiossarcoma/patologia , Fatores de Transcrição , Transformação Celular Neoplásica , Diferenciação Celular
3.
Clin Epigenetics ; 15(1): 167, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37858275

RESUMO

BACKGROUND: Rhabdomyosarcomas (RMS) are predominantly paediatric sarcomas thought to originate from muscle precursor cells due to impaired myogenic differentiation. Despite intensive treatment, 5-year survival for patients with advanced disease remains low (< 30%), highlighting a need for novel therapies to improve outcomes. Differentiation therapeutics are agents that induce differentiation of cancer cells from malignant to benign. The histone methyltransferase, Enhancer of Zeste Homolog 2 (EZH2) suppresses normal skeletal muscle differentiation and is highly expressed in RMS tumours. RESULTS: We demonstrate combining inhibition of the epigenetic modulator EZH2 with the differentiating agent retinoic acid (RA) is more effective at reducing cell proliferation in RMS cell lines than single agents alone. In PAX3-FOXO1 positive RMS cells this is due to an RA-driven induction of the interferon pathway resulting in apoptosis. In fusion negative RMS, combination therapy led to an EZH2i-driven upregulation of myogenic signalling resulting in differentiation. In both subtypes, EZH2 is significantly associated with enrichment of trimethylated lysine 27 on histone 3 (H3K27me3) in genes that are downregulated in untreated RMS cells and upregulated with EZH2 inhibitor treatment. These results provide insight into the mechanism that drives the anti-cancer effect of the EZH2/RA single agent and combination treatment and indicate that the reduction of EZH2 activity combined with the induction of RA signalling represents a potential novel therapeutic strategy to treat both subtypes of RMS. CONCLUSIONS: The results of this study demonstrate the potential utility of combining EZH2 inhibitors with differentiation agents for the treatment of paediatric rhabdomyosarcomas. As EZH2 inhibitors are currently undergoing clinical trials for adult and paediatric solid tumours and retinoic acid differentiation agents are already in clinical use this presents a readily translatable potential therapeutic strategy. Moreover, as inhibition of EZH2 in the poor prognosis FPRMS subtype results in an inflammatory response, it is conceivable that this strategy may also synergise with immunotherapies for a more effective treatment in these patients.


Assuntos
Proteína Potenciadora do Homólogo 2 de Zeste , Rabdomiossarcoma , Humanos , Criança , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Tretinoína/farmacologia , Tretinoína/metabolismo , Metilação de DNA , Rabdomiossarcoma/tratamento farmacológico , Rabdomiossarcoma/genética , Diferenciação Celular , Inibidores Enzimáticos/farmacologia , Apoptose , Linhagem Celular Tumoral
4.
Cancer Treat Rev ; 119: 102600, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37467626

RESUMO

Neuroblastoma is one of the commonest extra-cranial pediatric tumors, and accounts for over 15% of all childhood cancer mortality. Risk stratification for children with neuroblastoma is based on age, stage, histology, and tumor cytogenetics. The majority of patients are considered to have high-risk neuroblastoma, for which the long-term survival is less than 50%. Current treatments combine surgical resection, chemotherapy, stem cell transplantation, radiotherapy, anti-GD2 based immunotherapy as well as the differentiating agent isotretinoin. Despite the intensive multimodal therapies applied, there are high relapse rates, and recurrent disease is often resistant to further therapy. Enhancer of Zeste Homolog 2 (EZH2), a catalytic subunit of Polycomb Repressive Complex 2 (PRC2), is a histone methyltransferase that represses transcription through trimethylation of lysine residue K27 on histone H3 (H3K27me3). It is responsible for epigenetic repression of transcription, making EZH2 an essential regulator for cell differentiation. Overexpression of EZH2 has been shown to promote tumorigenesis, cancer cell proliferation and prevent tumor cells from differentiating in a number of cancers. Therefore, research has been ongoing for the past decade, developing treatments that target EZH2 in neuroblastoma. This review summarises the role of EZH2 in neuroblastoma and evaluates the latest research findings on the therapeutic potential of targeting EZH2 in the treatment of neuroblastoma.


Assuntos
Proteína Potenciadora do Homólogo 2 de Zeste , Neuroblastoma , Humanos , Criança , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Linhagem Celular Tumoral , Recidiva Local de Neoplasia , Complexo Repressor Polycomb 2 , Neuroblastoma/genética , Neuroblastoma/terapia , Neuroblastoma/patologia
5.
Cancers (Basel) ; 15(10)2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37345159

RESUMO

Rhabdomyosarcoma (RMS), the most common soft-tissue sarcoma in children and adolescents, represents an aberrant form of skeletal muscle differentiation. Both skeletal muscle development, as well as regeneration of adult skeletal muscle are governed by members of the myogenic family of regulatory transcription factors (MRFs), which are deployed in a highly controlled, multi-step, bidirectional process. Many aspects of this complex process are deregulated in RMS and contribute to tumorigenesis. Interconnected loops of super-enhancers, called core regulatory circuitries (CRCs), define aberrant muscle differentiation in RMS cells. The transcriptional regulation of MRF expression/activity takes a central role in the CRCs active in skeletal muscle and RMS. In PAX3::FOXO1 fusion-positive (PF+) RMS, CRCs maintain expression of the disease-driving fusion oncogene. Recent single-cell studies have revealed hierarchically organized subsets of cells within the RMS cell pool, which recapitulate developmental myogenesis and appear to drive malignancy. There is a large interest in exploiting the causes of aberrant muscle development in RMS to allow for terminal differentiation as a therapeutic strategy, for example, by interrupting MEK/ERK signaling or by interfering with the epigenetic machinery controlling CRCs. In this review, we provide an overview of the genetic and epigenetic framework of abnormal muscle differentiation in RMS, as it provides insights into fundamental mechanisms of RMS malignancy, its remarkable phenotypic diversity and, ultimately, opportunities for therapeutic intervention.

6.
Cancer Metastasis Rev ; 42(1): 335-359, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36723696

RESUMO

Pseudomyxoma peritonei (PMP) is a rare, progressive, slowly growing neoplastic condition which is poorly understood, with a 5-year progression-free survival rate as low as 48%. PMP is most commonly caused by appendiceal mucinous neoplasms (AMN), and understanding their genetic biology and pathogenicity may allow for the development of better novel systemic treatments to target key deleterious mutations and the implicated pathways. The primary aim of this systematic review was to identify the genetic profile of histologically confirmed human PMP or AMN samples. The secondary aim was to identify whether genetic marks could be used to predict patient survival. Ovid EMBASE, Ovid MEDLINE, PubMed, and Web of Science were searched to identify studies investigating the genetic profile of histologically-confirmed human PMP or AMN samples. We review findings of 46 studies totalling 2181 tumour samples. The most frequently identified somatic gene mutations in patients with PMP included KRAS (38-100%), GNAS (17-100%), and TP53 (5-23%); however, there were conflicting results of their effect on survival. Three studies identified molecular subtypes based on gene expression profiles classifying patients into oncogene-enriched, immune-enriched, and mixed molecular subtypes with prognostic value. This review summarises the current literature surrounding genetic aberrations in PMP and AMNs and their potential utility for targeted therapy. Given the recent advances in clinical trials to directly target KRAS and GNAS mutations in other cancers, we propose a rationale to explore these mutations in future pre-clinical studies in PMP with a view for a future clinical trial.


Assuntos
Neoplasias do Apêndice , Neoplasias Peritoneais , Pseudomixoma Peritoneal , Humanos , Pseudomixoma Peritoneal/genética , Pseudomixoma Peritoneal/patologia , Neoplasias Peritoneais/genética , Neoplasias do Apêndice/genética , Neoplasias do Apêndice/patologia , Perfil Genético , Proteínas Proto-Oncogênicas p21(ras)/genética
7.
Biochim Biophys Acta Gene Regul Mech ; 1865(5): 194848, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35905858

RESUMO

Histone modifying enzymes are involved in the posttranslational modification of histones and the epigenetic control of gene expression. They play a critical role in normal development, and there is increasing evidence of their role in developmental disorders (DDs). DDs are a group of chronic, severe conditions that impact the physical, intellectual, language and/or behavioral development of an individual. There are very few treatment options available for DDs such that these are conditions with significant unmet clinical need. Recessive variants in the gene encoding histone modifying enzyme KDM5B are associated with a DD characterized by developmental delay, facial dysmorphism and camptodactyly. KDM5B is responsible for the demethylation of lysine 4 on the amino tail of histone 3 and plays a vital role in normal development and regulating cell differentiation. This review explores the literature on KDM5B and what is currently known about its roles in development and developmental disorders.


Assuntos
Histonas , Histona Desmetilases com o Domínio Jumonji , Criança , Deficiências do Desenvolvimento/genética , Histonas/genética , Histonas/metabolismo , Humanos , Histona Desmetilases com o Domínio Jumonji/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Repressoras/metabolismo
8.
Mol Oncol ; 16(6): 1272-1289, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34850536

RESUMO

Rhabdomyosarcomas are aggressive pediatric soft-tissue sarcomas and include high-risk PAX3-FOXO1 fusion-gene-positive cases. Fibroblast growth factor receptor 4 (FGFR4) is known to contribute to rhabdomyosarcoma progression; here, we sought to investigate the involvement and potential for therapeutic targeting of other FGFRs in this disease. Cell-based screening of FGFR inhibitors with potential for clinical repurposing (NVP-BGJ398, nintedanib, dovitinib, and ponatinib) revealed greater sensitivity of fusion-gene-positive versus fusion-gene-negative rhabdomyosarcoma cell lines and was shown to be correlated with high expression of FGFR2 and its specific ligand, FGF7. Furthermore, patient samples exhibit higher mRNA levels of FGFR2 and FGF7 in fusion-gene-positive versus fusion-gene-negative rhabdomyosarcomas. Sustained intracellular mitogen-activated protein kinase (MAPK) activity and FGF7 secretion into culture media during serum starvation of PAX3-FOXO1 rhabdomyosarcoma cells together with decreased cell viability after genetic silencing of FGFR2 or FGF7 was in keeping with a novel FGF7-FGFR2 autocrine loop. FGFR inhibition with NVP-BGJ398 reduced viability and was synergistic with SN38, the active metabolite of irinotecan. In vivo, NVP-BGJ398 abrogated xenograft growth and warrants further investigation in combination with irinotecan as a therapeutic strategy for fusion-gene-positive rhabdomyosarcomas.


Assuntos
Comunicação Autócrina , Rabdomiossarcoma , Linhagem Celular Tumoral , Criança , Resistencia a Medicamentos Antineoplásicos , Fator 7 de Crescimento de Fibroblastos , Humanos , Irinotecano , Inibidores de Proteínas Quinases/farmacologia , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos , Rabdomiossarcoma/tratamento farmacológico , Rabdomiossarcoma/genética
9.
Cancers (Basel) ; 13(16)2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34439236

RESUMO

Oesophageal adenocarcinoma (OAC) has a dismal prognosis, where curable disease occurs in less than 40% of patients, and many of those with incurable disease survive for less than a year from diagnosis. Despite the widespread use of systematic chemotherapy in OAC treatment, many patients receive no benefit. New treatments are urgently needed for OAC patients. There is an emerging interest in epigenetic regulators in cancer pathogenesis, which are now translating into novel cancer therapeutic strategies. Histone-modifying enzymes (HMEs) are key epigenetic regulators responsible for dynamic covalent histone modifications that play roles in both normal and dysregulated cellular processes including tumorigenesis. Several HME inhibitors are in clinical use for haematological malignancies and sarcomas, with numerous on-going clinical trials for their use in solid tumours. This review discusses the current literature surrounding HMEs in OAC pathogenesis and their potential use in targeted therapies for this disease.

10.
Cancers (Basel) ; 13(14)2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-34298611

RESUMO

Neoadjuvant therapy followed by surgery is the standard of care for locally advanced esophageal adenocarcinoma (EAC). Unfortunately, response to neoadjuvant chemotherapy (NAC) is poor (20-37%), as is the overall survival benefit at five years (9%). The EAC genome is complex and heterogeneous between patients, and it is not yet understood whether specific mutational patterns may result in chemotherapy sensitivity or resistance. To identify associations between genomic events and response to NAC in EAC, a comparative genomic analysis was performed in 65 patients with extensive clinical and pathological annotation using whole-genome sequencing (WGS). We defined response using Mandard Tumor Regression Grade (TRG), with responders classified as TRG1-2 (n = 27) and non-responders classified as TRG4-5 (n =38). We report a higher non-synonymous mutation burden in responders (median 2.08/Mb vs. 1.70/Mb, p = 0.036) and elevated copy number variation in non-responders (282 vs. 136/patient, p < 0.001). We identified copy number variants unique to each group in our cohort, with cell cycle (CDKN2A, CCND1), c-Myc (MYC), RTK/PIK3 (KRAS, EGFR) and gastrointestinal differentiation (GATA6) pathway genes being specifically altered in non-responders. Of note, NAV3 mutations were exclusively present in the non-responder group with a frequency of 22%. Thus, lower mutation burden, higher chromosomal instability and specific copy number alterations are associated with resistance to NAC.

11.
Cancers (Basel) ; 13(7)2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33917420

RESUMO

Histone demethylases are epigenetic modulators that play key roles in regulating gene expression related to many critical cellular functions and are emerging as promising therapeutic targets in a number of tumor types. We previously identified histone demethylase family members as overexpressed in the pediatric sarcoma, rhabdomyosarcoma. Here we show high sensitivity of rhabdomyosarcoma cells to a pan-histone demethylase inhibitor, JIB-04 and identify a key role for the histone demethylase KDM4B in rhabdomyosarcoma cell growth through an RNAi-screening approach. Decreasing KDM4B levels affected cell cycle progression and transcription of G1/S and G2/M checkpoint genes including CDK6 and CCNA2, which are bound by KDM4B in their promoter regions. However, after sustained knockdown of KDM4B, rhabdomyosarcoma cell growth recovered. We show that this can be attributed to acquired molecular compensation via recruitment of KDM4A to the promoter regions of CDK6 and CCNA2 that are otherwise bound by KDM4B. Furthermore, upfront silencing of both KDM4B and KDM4A led to RMS cell apoptosis, not seen by reducing either alone. To circumvent compensation and elicit stronger therapeutic responses, our study supports targeting histone demethylase sub-family proteins through selective poly-pharmacology as a therapeutic approach.

12.
BMC Cancer ; 18(1): 217, 2018 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-29466962

RESUMO

BACKGROUND: MYCN is amplified in small cell lung cancers and several pediatric tumors, including alveolar rhabdomyosarcomas and neuroblastomas. MYCN protein is known to play a key oncogenic role in both alveolar rhabdomyosarcomas and neuroblastomas. MYCN opposite strand (MYCNOS) is a gene located on the antisense strand to MYCN that encodes alternatively spliced transcripts, two of which (MYCNOS-01 and MYCNOS-02) are known to be expressed in neuroblastoma and small cell lung cancer with reciprocal regulation between MYCNOS-02 and MYCN reported for neuroblastomas. We sought to determine a functional role for MYCNOS-01 in alveolar rhabdomyosarcoma and neuroblastoma cells and identify any associated regulatory effects between MYCN and MYCNOS-01. METHODS: MYCNOS-01, MYCNOS-02 and MYCN expression levels were assessed in alveolar rhabdomyosarcoma and neuroblastoma cell lines and tumor samples from patients using Affymetrix microarray data and quantitative RT-PCR. Following MYCNOS-01 or MYCN siRNA knockdown and MYCNOS-01 overexpression, transcript levels were assayed by quantitative RT-PCR and MYCN protein expression assessed by Western blot and immunofluorescence. Additionally, effects on cell growth, apoptosis and cell cycle profiles were determined by a metabolic assay, caspase activity and flow cytometry, respectively. RESULTS: MYCNOS-01 transcript levels were generally higher in NB and RMS tumor samples and cell lines with MYCN genomic amplification. RNA interference of MYCNOS-01 expression did not alter MYCN transcript levels but decreased MYCN protein levels. Conversely, MYCN reduction increased MYCNOS-01 transcript levels, creating a negative feedback loop on MYCN protein levels. Reduction of MYCNOS-01 or MYCN expression decreased cell growth in MYCN-amplified alveolar rhabdomyosarcoma and neuroblastoma cell lines. This is consistent with MYCNOS-01-mediated regulation of MYCN contributing to the phenotype observed. CONCLUSIONS: An alternative transcript of MYCNOS, MYCNOS-01, post-transcriptionally regulates MYCN levels and affects growth in MYCN-amplified rhabdomyosarcoma and neuroblastoma cells.


Assuntos
Regulação Neoplásica da Expressão Gênica , Proteína Proto-Oncogênica N-Myc/genética , Neuroblastoma/metabolismo , RNA Longo não Codificante/metabolismo , Rabdomiossarcoma Alveolar/metabolismo , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Proteína Proto-Oncogênica N-Myc/metabolismo , Neuroblastoma/genética , Neuroblastoma/fisiopatologia , Rabdomiossarcoma Alveolar/genética , Rabdomiossarcoma Alveolar/fisiopatologia
13.
Clin Cancer Res ; 18(3): 796-807, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22065083

RESUMO

PURPOSE: Rhabdomyosarcomas are a major cause of cancer death in children, described with MYCN amplification and, in the alveolar subtype, transcription driven by the PAX3-FOXO1 fusion protein. Our aim was to determine the prevalence of N-Myc protein expression and the potential therapeutic effects of reducing expression in rhabdomyosarcomas, including use of an antigene strategy that inhibits transcription. EXPERIMENTAL DESIGN: Protein expression was assessed by immunohistochemistry. MYCN expression was reduced in representative cell lines by RNA interference and an antigene peptide nucleic acid (PNA) oligonucleotide conjugated to a nuclear localization signal peptide. Associated gene expression changes, cell viability, and apoptosis were analyzed in vitro. As a paradigm for antigene therapy, the effects of systemic treatment of mice with rhabdomyosarcoma cell line xenografts were determined. RESULTS: High N-Myc levels were significantly associated with genomic amplification, presence of the PAX3/7-FOXO1 fusion genes, and proliferative capacity. Sustained reduction of N-Myc levels in all rhabdomyosarcoma cell lines that express the protein decreased cell proliferation and increased apoptosis. Positive feedback was shown to regulate PAX3-FOXO1 and N-Myc levels in the alveolar subtype that critically decrease PAX3-FOXO1 levels on reducing N-Myc. Pharmacologic systemic administration of the antigene PNA can eliminate alveolar rhabdomyosarcoma xenografts in mice, without relapse or toxicity. CONCLUSION: N-Myc, with its restricted expression in non-fetal tissues, is a therapeutic target to treat rhabdomyosarcomas, and blocking gene transcription using antigene oligonucleotide strategies has therapeutic potential in the treatment of cancer and other diseases that has not been previously realized in vivo.


Assuntos
Terapia Genética/métodos , Proteínas Nucleares/genética , Proteínas Oncogênicas/genética , Ácidos Nucleicos Peptídicos/farmacologia , Rabdomiossarcoma/genética , Animais , Apoptose/efeitos dos fármacos , Western Blotting , Linhagem Celular Tumoral , Ensaio de Desvio de Mobilidade Eletroforética , Dosagem de Genes , Genes myc/genética , Humanos , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Camundongos , Camundongos Nus , Proteína Proto-Oncogênica N-Myc , Proteínas de Fusão Oncogênica/biossíntese , Proteínas de Fusão Oncogênica/genética , Fatores de Transcrição Box Pareados/biossíntese , Fatores de Transcrição Box Pareados/genética , Proteínas Proto-Oncogênicas c-myc/biossíntese , Proteínas Proto-Oncogênicas c-myc/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Rabdomiossarcoma/terapia , Transcrição Gênica , Ensaios Antitumorais Modelo de Xenoenxerto
14.
J Physiol ; 587(3): 521-9, 2009 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-19047208

RESUMO

NKCC1 is a broadly expressed Na(+)-K(+)-Cl(-) co-transporter involved in regulation of ion flux across the cell membrane and in regulating cell volume. Whilst much is known about the co-transporter activity of NKCC1 and its regulation by protein kinases and phosphatases, little is known about the activities of NKCC1 that are co-transporter independent. In this report we show that over-expression of NKCC1 in embryos of Xenopus laevis induces secondary axes, independently of its co-transporter activity. In addition, over-expression of NKCC1 results in the formation of neural tissue in ectodermal explants. We also show that NKCC1 is expressed broadly but non-uniformly in embryos of Xenopus laevis and Xenopus tropicalis, with prominent expression in the notochord, nervous system and stomach. These results provide insights into an additional, previously unreported activity of NKCCl.


Assuntos
Padronização Corporal , Transporte de Íons , Simportadores de Cloreto de Sódio-Potássio/fisiologia , Animais , Proteínas Morfogenéticas Ósseas/metabolismo , Bumetanida/administração & dosagem , Técnicas de Cultura de Células , Ectoderma/metabolismo , Furosemida/administração & dosagem , Mucosa Gástrica/metabolismo , Perfilação da Expressão Gênica , Transporte de Íons/efeitos dos fármacos , Sistema Nervoso/embriologia , Sistema Nervoso/metabolismo , Notocorda/embriologia , Notocorda/metabolismo , Estrutura Terciária de Proteína/fisiologia , Inibidores de Simportadores de Cloreto de Sódio e Potássio/administração & dosagem , Simportadores de Cloreto de Sódio-Potássio/química , Membro 2 da Família 12 de Carreador de Soluto , Estômago/embriologia , Proteínas Wnt/metabolismo , Xenopus laevis/embriologia , Xenopus laevis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA