Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Environ Technol ; : 1-11, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38955504

RESUMO

As volatile organic compounds (VOCs), gaseous ethylbenzene has adverse effects on human health and ecology. Therefore, an effective degradation process is highly desirable. The Fenton process under UV 365 nm was selected as the first option to remove gaseous ethylbenzene in a bubble column reactor. The main parameters for the batch experiments were systematically studied, including H2O2 concentration, [H2O2]/[Fe2+], pH, UV wavelength, UV intensity, gaseous ethylbenzene concentration, gas flow rate, and process stability towards removal efficiency. The optimum conditions were found to be H2O2 concentration of 100 mmol·L-1, [H2O2]/[Fe2+] of 4, pH of 3.0, UV wavelength of 365 nm, UV power of 5 W, gas flow rate of 900 mL·min-1, and gaseous ethylbenzene concentration of 30 ppm, resulting in a removal efficiency of 76.3%. The study found that the Fenton process, when coupled with UV 365 nm, was highly effective in removing gaseous ethylbenzene. The degradation mechanism of gaseous ethylbenzene was proposed in the UV365/Fenton process based on EPR, radical quenching experiments, iron analysis, carbon balance, and GC-MS analysis. The results indicated that •OH played a crucial role in the process.

2.
Discov Oncol ; 15(1): 266, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38967893

RESUMO

Glioma is the most common malignant tumor in the central nervous system, and its unique pathogenesis often leads to poor treatment outcomes and prognosis. In 2021, the World Health Organization (WHO) divided gliomas into five categories based on their histological characteristics and molecular changes. Non-coding RNA is a type of RNA that does not encode proteins but can exert biological functions at the RNA level, and long non-coding RNA (lncRNA) is a type of non-coding RNA with a length exceeding 200 nt. It is controlled by various transcription factors and plays an indispensable role in the regulatory processes in various cells. Numerous studies have confirmed that the dysregulation of lncRNA is critical in the pathogenesis, progression, and malignancy of gliomas. Therefore, this article reviews the proliferation, apoptosis, invasion, migration, angiogenesis, immune regulation, glycolysis, stemness, and drug resistance changes caused by the dysregulation of lncRNA in gliomas, and summarizes their potential clinical significance in gliomas.

3.
ACS Chem Neurosci ; 15(7): 1356-1365, 2024 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-38483181

RESUMO

Transthyretin (TTR) is a tetrameric homologous protein that can dissociate into monomers. Misfolding and aggregation of TTR can lead to amyloid transthyretin amyloidosis (ATTR), which can cause many diseases (e.g., senile systemic amyloidosis, familial amyloid cardiomyopathy, and familial amyloid polyneuropathy). Despite growing evidence indicating that small oligomers play a critical role in regulating cytotoxicity, the structures of these oligomeric intermediates and their conformational transformations are still unclear, impeding our understanding of neurodegenerative mechanisms and the development of therapeutics targeting early aggregation species. The TTR monomer protein consists of various fragments prone to self-aggregation, including the residue 105-115 sequence. Therefore, our study investigated the assembly progress of ATTR (105-115) peptides using all-atom molecular dynamics simulations. The findings indicate that the probability of ß-sheet content increases with increasing numbers of peptides. Additionally, interactions between hydrophobic residues L110 and L111 are crucial for the formation of a ß-rich oligomer formation. These ß-rich oligomers may adopt ß-barrel conformations, potentially toxic oligomer species. Free-energy analysis reveals that ß-barrel conformations serve as intermediates for these ß-rich oligomers. Our insights into the structural ensemble dynamics of ATTR (105-115) contribute to understanding the physical mechanisms underlying the ß-barrel oligomers of ATTR. These findings may shed light on the pathological role of ATTR in neurodegenerative diseases and offer potential therapeutic targets.


Assuntos
Neuropatias Amiloides Familiares , Amiloide , Pré-Albumina , Amiloide/metabolismo , Simulação de Dinâmica Molecular , Proteínas Amiloidogênicas , Peptídeos/química , Entropia
4.
Artigo em Inglês | MEDLINE | ID: mdl-38310576

RESUMO

BACKGROUND: Translationally controlled tumour protein (TCTP) is associated with tumor diseases, such as breast cancer, and its inhibitor can reduce the growth of tumor cells. Unfortunately, there is currently no effective medication available for treating TCTP-related breast cancer. OBJECTIVE: The objective of this study was to explore the inhibitor candidates among natural compounds for the treatment of breast cancer related to TCTP protein. METHODS: To explore the potential inhibitors of TCTP, we first screened out four potential inhibitors in the Traditional Chinese Medicine (TCM) for cancer based on AI virtual screening using the docking method, and then revealed the interaction mechanism of TCTP and four candidate inhibitors from TCM with molecular docking and molecular dynamics (MD) methods. RESULTS: Based on the conformational characteristics and the MD properties of the four leading compounds, we designed the new skeleton molecules with the AI method using MolAICal software. Our MD simulations have revealed that different small molecules bind to different sites of TCTP, but the flexible regions and the signaling pathways are almost the same, and the VDW and hydrophobic interactions are crucial in the interactions between TCTP and ligands. CONCLUSION: We have proposed the candidate inhibitor of TCTP. Our study has provided a potential new method for exploring inhibitors from Traditional Chinese Medicine (TCM).

5.
J Hazard Mater ; 465: 133396, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38176261

RESUMO

Pyridine is a widely employed nitrogen-containing heterocyclic organic, and the discharge of pyridine wastewater poses substantial environmental challenges due to its recalcitrance and toxicity. Co-metabolic degradation emerged as a promising solution. In this study, readily degradable glucose and the structurally analogous phenol were used as co-metabolic substrates respectively, and the corresponding mechanisms were thoroughly explored. To treat 400 mg/L pyridine, all reactors achieved remarkably high removal efficiencies, surpassing 98.5%. And the co-metabolism reactors had much better pyridine-N removal performance. Batch experiments revealed that glucose supplementation bolstered nitrogen assimilation, thereby promoting the breakdown of pyridine, and resulting in the highest pyridine removal rate and pyridine-N removal efficiency. The high abundance of Saccharibacteria (15.54%) and the enrichment of GLU and glnA substantiated this finding. On the contrary, phenol delayed pyridine oxidation, potentially due to its higher affinity for phenol hydroxylase. Nevertheless, phenol proved valuable as a carbon source for denitrification, augmenting the elimination of pyridine-N. This was underscored by the abundant Thauera (30.77%) and Parcubacteria (7.21%) and the enriched denitrification enzymes (narH, narG, norB, norC, and nosZ, etc.). This study demonstrated that co-metabolic degradation can bolster the simultaneous conversion of pyridine and pyridine-N, and shed light on the underling mechanism.


Assuntos
Carbono , Microbiota , Fenol , Fenóis , Nitrogênio , Piridinas , Glucose , Desnitrificação , Reatores Biológicos/microbiologia
6.
J Hazard Mater ; 465: 133101, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38042006

RESUMO

In view of the near-neutral and high-salt conditions, the Fenton technology with hydroxyl radicals (HO•) as the main reactive species is difficult to satisfy the removal of trace emerging contaminants (ECs) in pharmaceutical sewage. Here, a layered double hydroxide FeZn-LDH was prepared, and the selective formation of ≡Fe(IV)=O in Fenton-like system was accomplished by the chemical environment regulation of the iron sites and the pH control of the microregion. The introduced zinc can increase the length of Fe-O bond in the FeZn-LDH shell layer by 0.22 Å compared to that in Fe2O3, which was conducive to the oxygen transfer process between ≡Fe(III) and H2O2, resulting in the ≡Fe(IV)=O formation. Besides, the amphoteric hydroxide Zn(OH)2 can regulate the pH of the FeZn-LDH surface microregion, maintaining reaction pH at around 6.5-7.5, which could avoid the quenching of ≡Fe(IV)=O by H+. On the other hand, owing to the anti-interference of ≡Fe(IV)=O and the near-zero Zeta potential on the FeZn-LDH surface, the trace ECs can also be effectively degraded under high-salt conditions. Consequently, the process of ≡Fe(IV)=O generation in FeZn-LDH system can satisfy the efficient removal of ECs under near-neutral and high-salt conditions.

7.
Chemosphere ; 350: 141040, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38145846

RESUMO

With the aim of obtaining enhanced nitrogen removal and phosphate recovery in mainstream sewage, we examined an integrated partial-denitrification/anaerobic ammonia oxidation (PD/A) process over a period of 189 days to accomplish this goal. An up-flow anaerobic fixed-bed reactor (UAFB) used in the integrated PD/A process was started up with anammox sludge inoculated and the influent composition controlled. Results showed that the system achieved a phosphorus removal efficiency of 82% when the influent concentration reached 12.0 mg/L. Batch tests demonstrated that stable and efficient removal of chemical oxygen demand (COD), nitrogen, and phosphorus was achieved at a COD/NO3--N ratio of 3.5. Scanning electron microscope (SEM) and X-ray diffraction (XRD) analysis indicated that hydroxyapatite was the main crystal in the biofilm. Furthermore, substrate variation along the axial length of UAFB indicated that partial denitrification and anammox primarily took place near the reactor's bottom. According to a microbiological examination, 0.4% of the PD/A process's microorganisms were anaerobic ammonia oxidizing bacteria (AnAOB). Ca. Brocadia, Ca. Kuenenia, and Ca. Jettenia served as the principal AnAOB generals in the system. Thauera, Candidatus Accumulibacter, Pseudomonas, and Acinetobacter, which together accounted for 27% of the denitrifying and phosphorus-accumulating bacteria, were helpful in advanced nutrient removal. Therefore, the combined PD/A process can be a different option in the future for sewage treatment to achieve contemporaneous nutrient removal.


Assuntos
Esgotos , Águas Residuárias , Esgotos/química , Desnitrificação , Oxidação Anaeróbia da Amônia , Fósforo , Nitrogênio , Reatores Biológicos/microbiologia , Oxirredução
8.
Sci Total Environ ; 885: 163848, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37137366

RESUMO

Increasing antibiotic mycelial residues (AMRs) and related antibiotic resistance genes (ARGs) pose a significant threat to ecosystems and public health. Composting is a crucial method for recycling AMRs. However, the variation in ARGs and gentamicin degradation in the composting process of gentamicin mycelial residues (GMRs) has received little attention on an actual industrial scale. This research investigated the metabolic pathways and functional genes on the gentamicin and ARGs removal during the co-composting of GMRs with addition of various organic wastes (rice chaff, mushroom residue, etc.) under various C/N ratios (15:1, 25:1, 35:1). The results showed that the removal efficiencies of gentamicin and the total ARGs were 98.23 % and 53.20 %, respectively, with the C/N ratio of 25:1. Moreover, metagenomics and LS-MS/MS analysis demonstrated that the acetylation was the primary pathway for gentamicin biodegradation and the corresponding degrading genes were the categories of aac(3) and aac(6'). However, the relative abundance of aminoglycoside resistance genes (AMGs) were increased after 60 days composting. The partial least squares path modeling analysis demonstrated that the AMG abundance was directly influenced by the predominant mobile gene elements intI1 (p < 0.05) which was closely related to the bacterial community composition. Therefore, the ecological environmental risks should be assessed in the future application of GMRs composting products.


Assuntos
Antibacterianos , Compostagem , Antibacterianos/farmacologia , Gentamicinas/farmacologia , Ecossistema , Metagenômica , Espectrometria de Massas em Tandem , Genes Bacterianos , Esterco , Resistência Microbiana a Medicamentos/genética
9.
Environ Sci Pollut Res Int ; 30(21): 60967-60975, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37042919

RESUMO

The protein contents of hydrolyzed sludge supernatant are commonly determined with the Kjeldahl method, but this method suffers from complicated operations, long process times, and large quantities of chemicals consumed. In this paper, the Lowry, bicinchoninic acid (BCA), and Bradford methods were used to test the precision and spiked recovery of proteins from sludge supernatants hydrolyzed by alkaline-thermal hydrolysis (ATH), enzymatic hydrolysis (EH), and ultrasound-assisted enzymatic hydrolysis (UEH), and the results were compared with those obtained with the Kjeldahl method. For all the hydrolytic processes, the sludge protein values determined with the three tested methods were within 0.05 of each other, which met the experimental requirement for accuracy. Both the Lowry and BCA methods had recovery rates of 95-105%, while the Bradford method showed large deviations and was not highly reliable. The three protein determination methods showed significant differences with the Kjeldahl method (P<0.05). However, the relative deviation between the Kjeldahl and BCA methods was the smallest (3-5%), followed by those between the Kjeldahl and the Lowry (11-21%) and Bradford methods (21-90%), and the causes of the deviations were analyzed based on the protein hydrolysate components and the mechanisms for the different detection methods. On the basis of these results, the BCA method was chosen as the most appropriate quantification method for use with sludge protein extraction, and it was used to analyze the protein contents extracted from residual sludge samples obtained from two sewage treatment plants. The reliability of the method was verified, and this lays a foundation for the extraction and reclamation of sludge proteins.


Assuntos
Proteínas , Esgotos , Esgotos/química , Reprodutibilidade dos Testes , Proteínas/química , Hidrólise , Hidrolisados de Proteína
10.
Sci Total Environ ; 870: 162004, 2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-36739027

RESUMO

The abundant protein in excess sludge can be recovered to prepare high value-added products. However, this sustainable treatment method still has large challenges, such as high energy consumption. In this work, the classical batch operation (BO) and semi-batch operation (SBO) modes were adopted and compared for ultrasonic-alkali hydrolysis. The results showed that the reaction time of SBO significantly decreased to half of that of BO with the same efficiency (ca. 70 %), indicating that SBO was much more energy-efficient. Moreover, analysis of the nitrogen solubility index and trichloroacetic acid-soluble nitrogen index demonstrated that the further proteolysis of protein under SBO was limited. Furthermore, the first-order reaction model fitted the hydrolysis data well (R2 ≥ 0.91) for both modes, in which the rate constant of SBO (k = 0.44 min-1) was 2.3 times that of BO. Finally, the properties of both products met the standards of foaming extinguishers.


Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Eliminação de Resíduos Líquidos/métodos , Hidrólise , Ultrassom , Álcalis , Proteínas , Nitrogênio
11.
Water Sci Technol ; 87(2): 423-435, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36706291

RESUMO

In this study, the effect of arsenic on the sulfamethoxazole (SMX) removal efficiency and microbial community structure was investigated over 60 days using the SBR process. The results showed that the presence of arsenic had no significant impact on the system performance, the removal efficiencies of two reactors, R1 (the control test) and R2 (with the addition of arsenic), were 13.36 ± 5.71 and 14.20 ± 5.27%, which were attributed to the adsorption of SMX by fulvic acid-like substances and tryptophan-like proteins of extracellular polymeric substances. Compared to the seed sludge, the species number indicated that R2 possessed the richer diversity, while R1 possessed the lower diversity on day 60, which might be relative to the transferring of antibiotic resistance genes (ARGs) in sludge bacterial communities; the minute amounts of arsenic could make the relative levels of Sul1 and Sul2 genes which encode ARGs of sulfonamides in R2 (2.07 and 2.47%) be higher than that in R1 (1.65 and 1.27%), which made the bacterial community of the R2 system more adaptable to SMX stress. Therefore, the minute amounts of arsenic weakened the effect of SMX on the system and enhanced the stability of the microbial community structure.


Assuntos
Arsênio , Microbiota , Sulfametoxazol , Esgotos , Antibacterianos
12.
Chemosphere ; 313: 137579, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36529172

RESUMO

In this study, a simultaneous fill/draw SBR was applied to investigate the feasibility of partial nitrification process with inoculation of matured aerobic granular sludge. The system operated stably over 120 days with the relatively high ammonium removal efficiency (≥ 98.83%) and nitrite accumulation rate (≥ 89.60%). Moreover, a hybrid flocs/granules system was formed stably after long-term operation. The nitrite-oxidizing bacteria (NOB) was suppressed effectively because of the combined effect of simultaneous fill/draw mode and intermittent aeration conditions. Furthermore, batch tests were separately tested with isolated granules (> 200 µm) and flocs (< 200 µm), showing that the specific ammonia oxidation rate of granules and flocs were 15.94 ± 2.85 and 66.77 ± 0.83 mg N/(g MLSS·h), respectively. Correspondingly, the abundance of Nitrosomonas as a typical AOB in granules (6.24%) and flocs (11.94%) was obtained via the microbial diversity analysis, while NOB was almost hardly detected in granules and flocs.


Assuntos
Compostos de Amônio , Esgotos , Esgotos/microbiologia , Nitritos , Nitrificação , Reatores Biológicos/microbiologia , Bactérias
13.
Sci Total Environ ; 852: 158512, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36063951

RESUMO

Excess sludge contains a large amount of protein and can be recycled to prepare industrial foaming agents, foliar fertilizers and other high value-added products. The optimization and effects of sludge protein extraction using the common processes of alkaline thermal hydrolysis (ATH) and enzymatic hydrolysis (EH) have been widely studied. This study focused on the protein extraction mechanisms of ATH and EH by comparing the ratio of intracellular to extracellular proteins extracted and the transformation of protein during the hydrolysis process. The extracellular protein content was 82.6 ± 5.07 mg/g VSS, and the content of intracellular protein extracted using ATH and EH was 376.9 mg/g VSS and 127.9 mg/g VSS, respectively. The ratio of intracellular to extracellular proteins extracted by ATH and EH was 4.5 and 1.5, respectively, indicating that ATH had a much better wall-breaking effect that allowed it to extract abundant intracellular proteins. The protein content obtained from ATH continuously increased over time, and approximately 38 % of proteins were further hydrolyzed to polypeptides. In contrast, the relatively low protein content extracted by EH possibly limited subsequent polypeptide hydrolysis, but subsequent hydrolysis to amino acids was not noticeably affected and was linearly correlated with the amount of protein extracted. An analysis of the recycling convenience and value of extracted proteins showed that the sludge dewatering performance increased by 86.7 % and 45.5 % after ATH and EH treatment, respectively, which was conducive to the subsequent separation of the protein solution. The protein extracted by ATH, with a large amount of peptides, would be beneficial to prepare industrial foaming agents, while the protein extracted by EH was rich in free amino acids and could be used to prepare foliar fertilizer.


Assuntos
Esgotos , Purificação da Água , Esgotos/química , Hidrólise , Fertilizantes , Eliminação de Resíduos Líquidos , Proteínas/química , Aminoácidos
14.
Chemosphere ; 303(Pt 2): 134936, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35569633

RESUMO

Rich protein within excess sludge could be recovered to prepare high value-added products such as liquid fertilizer and foaming agents. Low-intensity ultrasonication was adopted to help extract sludge protein by improving enzyme activity. Alkaline protease was added to the sludge for ultrasonic irradiation, and the maximum enzyme activity at 3500 kJ/kg TS was approximately 21% higher than that without ultrasonication. The protein extraction effect, specific resistance of sludge (SRS) and economics of low-intensity ultrasound-assisted enzymatic hydrolysis (LUEH) were compared with those of single enzymatic hydrolysis (EH) and HUEH under optimal conditions. The protein extraction rates of HUEH and LUEH were both higher than that of EH. Although the protein extraction rate of LUEH was 13.6% lower than that of HUEH, the amino acid content was similar because the low-intensity ultrasonic radiation promoted the enzyme activity and thereby enhanced the protein hydrolysis capacity. After hydrolysis, the SRS of LUEH was lower than that of HUEH, indicating that LUEH possessed a better dewatering performance, which was beneficial to the subsequent separation of the protein solution. The amount consumed by LUEH was approximately 20% lower than that consumed by HUEH and 17.3% lower than that consumed by EH. In addition, the enzyme dosage was reduced by approximately 38.5% with LUEH. Therefore, the total cost of LUEH was less than that of EH and HUEH, indicating that LUEH is more economically feasible for the extraction of protein from excess sludge.


Assuntos
Proteínas , Esgotos , Hidrólise , Luz , Proteínas/química , Esgotos/química , Tensoativos , Eliminação de Resíduos Líquidos
15.
Bioresour Technol ; 341: 125839, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34523562

RESUMO

A Phanerochaete chrysosporium-based aerobic granular sludge (PC-AGS) was developed by inoculating fungal mycelial pellets into a lab-scale aerobic granular sequencing batch reactor (AGSBR). A strategy using step-anaerobic feeding coupled with multi A/O conditions was adopted. The results showed that the removal efficiencies for total phosphorus (TP) and total inorganic nitrogen (TIN) were 94.56 ± 2.92% and 75.20 ± 7.74%, respectively, under relatively low aeration time. Compared with original AGS, the content of extracellular proteins for PC-AGS obviously increased from 18.61 to 41.44 mg/g MLSS by the end of phase I. Moreover, the mature granules had a larger size and better stability during the 100 days operation. Furthermore, the analysis of microbial diversity detected many key functional groups in PC-AGS granules that were beneficial to nutrients removal. This work demonstrated that the addition of fungal pellets not only enhanced the removal performance, but also improved the stability of the AGS system.


Assuntos
Phanerochaete , Esgotos , Aerobiose , Reatores Biológicos , Nitrogênio , Nutrientes , Fósforo , Eliminação de Resíduos Líquidos
16.
Chemosphere ; 275: 129998, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33639552

RESUMO

The UV lights of different wavelengths were performed in boosting hydroxyl radicals (OH) generation from traditional Fenton reagent for the gaseous toluene removal. The Fenton, UV254/Fenton and UV365/Fenton processes were first adopted to eliminate gaseous toluene through the bubble column reactor, respectively. The stable toluene removal efficiency in 60 min was 85.31% in the UV365/Fenton process, which was higher than other processes. The gaseous toluene was mainly oxidized into CO2 rather than other gaseous intermediates in the UV365/Fenton process. For UV365/Fenton process, the GC-MS tests were carried out to figure out the aqueous intermediates of gaseous toluene removal. The OH concentration in the UV365/Fenton process was the highest among all the parallel tests via the EPR experiments and the quantificational measurements with coumarin as the probe. The iron ion in the aqueous solution was systematically evaluated with the experiments proceeding. The evolution of iron ion in the aqueous solution indicated that the fast reduction of Fe3+ to Fe2+ was assisted with 365 nm UV rather than 254 nm UV, which played a key point in the high gaseous toluene removal efficiency. This study demonstrated that the combination of UV365 irradiation and Fenton in the wet scrubbing reactor performed a synergistic effect on the gaseous toluene removal.


Assuntos
Gases , Tolueno , Peróxido de Hidrogênio , Ferro , Oxirredução , Raios Ultravioleta
17.
Sci Total Environ ; 770: 145205, 2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-33515876

RESUMO

Aniline is a toxic aromatic amine and an inhibitor of nitrification. This study explored the inhibition effect and underlying mechanism. After sludge acclimation, 540 mg/L aniline was removed in 24 h and almost all ammonia released from aniline was oxidized to nitrate. However, nitrification never started until no aniline left. The cellular adenosine triphosphate (cATP) concentration of acclimated sludge reduced only by 2% after aniline exposure. Neither transmembrane transport of ammonia nor ammonia monooxygenase (AMO) activity was affected by aniline. Growing initial aniline concentration did not deteriorate the specific nitrification rate (NR). These all revealed that the toxicity of aniline only play a minor role in inhibition. Competition for dissolved oxygen (DO) was proposed to be another possible inhibition mechanism. The oxygen affinity constant (Ks) of aniline degraders and ammonia-oxidizing bacteria (AOB) was calculated to be 0.894 mg/L and 1.274 mg/L respectively, suggesting the former possessed much stronger oxygen affinity (P < 0.01). With aniline and ammonium as initial substrates, increasing aeration intensity advanced nitrification and increased the NR. Max NR of 0.63 mgN/(gMLSS·h) was achieved at the highest aeration intensity of 1000 mL/min. This study brings one step closer to better removal of aniline and derived nitrogen pollutants.

18.
Bioresour Technol ; 326: 124628, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33515914

RESUMO

A strategy that integrates the anammox and hydroxyapatite crystallization in an up-flow anaerobic fixed-bed reactor (UAFB) was investigated to simultaneously remove nitrogen and recover phosphorus. During the 430 days of operation, 73.1 ±â€¯6.6% of influent phosphorus was removed with an efficient nitrogen removal efficiency of 87.8 ±â€¯1.7%. After long-term operation, numerous acicular and micron-sized crystals were observed on the matured biofilm, of which the phosphorus content was around 10.21% (wt%) and hydroxyapatite was the main form of crystals through SEM-EDS, FT-IR and XRD analysis. The variation of substrates along the axial length of UAFB showed that phosphate removal was positively correlated with anammox and pH. Moreover, three anammox bacteria including Candidatus Brocadia (19.73%), Candidatus Jettenia (0.49%) and Candidatus Kuenenia (0.85%) were detected at the bottom of UAFB, while Candidatus Jettenia (4.67%) was dominant at the top. Hence, the anammox-based biofilm system could be alternative for the recovery of phosphorus from nutrient-rich wastewater.


Assuntos
Nitrogênio , Fósforo , Anaerobiose , Reatores Biológicos , Hidroxiapatitas , Oxirredução , Espectroscopia de Infravermelho com Transformada de Fourier , Águas Residuárias
19.
Bioresour Technol ; 320(Pt A): 124276, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33099157

RESUMO

In this study, the performance of volatile fatty acids (VFAs) production and phosphorus (P) release during Al-waste activated sludge (Al-WAS) anaerobic fermentation with stepwise pH increases from 8 to 11 was investigated via a long-term acclimation strategy. As results, VFAs concentration increased with increasing pH and the maximum yield of VFAs was 358.03 mg-COD/g VS at pH 11, which was much higher than at pH 8. P was also released during the process, and the P concentration increased gradually from 26 mg/L at pH 8 to 186 mg/L at pH 11, accounting for 35.8% of the total P in the Al-WAS. The P distribution results demonstrated the dissolution of non-apatite inorganic phosphorus (NAIP) and organic P in the sludge contributed to release P into the liquid at pH 8, 9, and 10, while inorganic P release originated from the dissolution of NAIP at pH 11.


Assuntos
Fósforo , Esgotos , Reatores Biológicos , Ácidos Graxos Voláteis , Fermentação , Concentração de Íons de Hidrogênio
20.
Water Sci Technol ; 82(2): 364-372, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32941177

RESUMO

Aerobic granular sludge process as a promising biotechnology has been one of the research hotspots in the area of wastewater treatment during the last two decades. In our study, after around 60 days' operation, filamentous granular sludge (FGS) was formed under low aeration (SAV = 0.085 cm/s) and multi-feeding conditions. The characteristics of FGS and the performance of the FGS system for organic matter and nutrients removal were investigated. The results showed that chemical oxygen demand (COD) and total organic carbon (TOC) removal efficiencies were relatively stable, while COD removal efficiency increased from 82% to 94% in the presence of sulfamethoxazole (SMZ) at low concentration (1 mg/L). At the same time, the TP removal efficiency could be improved and maintained at around 75%, while TN removal efficiency was flocculated at around 50%. The analysis of microbial diversity showed that Thiothrix and Trichococcus as typical filamentous species were detected and dominant in the FGS system. The abundance of Thiothrix increased from 15% to 34%, while Trichococcus decreased from 23% to 3% in the presence of SMZ.


Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Aerobiose , Análise da Demanda Biológica de Oxigênio , Reatores Biológicos , Nitrogênio , Águas Residuárias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA