Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
CNS Neurosci Ther ; 30(9): e70054, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39306799

RESUMO

OBJECTIVES: This study aims to elucidate the role of Fe2+ overload in kainic acid (KA)-induced excitotoxicity, investigate the involvement of ferritinophagy selective cargo receptor NCOA4 in the pathogenesis of excitotoxicity. METHODS: Western blotting was used to detect the expression of FTH1, NCOA4, Lamp2, TfR, FPN, and DMT1 after KA stereotaxic injection into the unilateral striatum of mice. Colocalization of Fe2+ with lysosomes in KA-treated primary cortical neurons was observed by using confocal microscopy. Desferrioxamine (DFO) was added to chelate free iron, a CCK8 kit was used to measure cell viability, and the Fe2+ levels were detected by FerroOrange. BODIPY C11 was used to determine intracellular lipid reactive oxygen species (ROS) levels, and the mRNA levels of PTGS2, a biomarker of ferroptosis, were measured by fluorescent quantitative PCR. 3-Methyladenine (3-MA) was employed to inhibit KA-induced activation of autophagy, and changes in ferritinophagy-related protein expression and the indicated biomarkers of ferroptosis were detected. Endogenous NCOA4 was knocked down by lentivirus transfection, and cell viability and intracellular Fe2+ levels were observed after KA treatment. RESULTS: Western blot results showed that the expression of NCOA4, DMT1, and Lamp2 was significantly upregulated, while FTH1 was downregulated, but there were no significant changes in TfR and FPN. The fluorescence results indicated that KA enhanced the colocalization of free Fe2+ with lysosomes in neurons. DFO intervention could effectively rescue cell damage, reduce intracellular lipid peroxidation, and decrease the increased transcript levels of PTGS2 caused by KA. Pretreatment with 3-MA effectively reversed KA-induced ferritinophagy and ferroptosis. Endogenous interference with NCOA4 significantly improved cell viability and reduced intracellular free Fe2+ levels in KA-treated cells. CONCLUSION: KA-induced excitotoxicity activates ferritinophagy, and targeting ferritinophagy effectively inhibits downstream ferroptosis. Interference with NCOA4 effectively attenuates KA-induced neuronal damage. This study provides a potential therapeutic target for excitotoxicity related disease conditions.


Assuntos
Ferritinas , Ferroptose , Neurônios , Coativadores de Receptor Nuclear , Animais , Ferroptose/efeitos dos fármacos , Ferroptose/fisiologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Camundongos , Ferritinas/metabolismo , Coativadores de Receptor Nuclear/metabolismo , Coativadores de Receptor Nuclear/genética , Autofagia/efeitos dos fármacos , Autofagia/fisiologia , Camundongos Endogâmicos C57BL , Masculino , Receptores da Transferrina/metabolismo , Receptores da Transferrina/genética , Espécies Reativas de Oxigênio/metabolismo , Células Cultivadas , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Ferro/metabolismo , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Proteína 2 de Membrana Associada ao Lisossomo/metabolismo , Proteína 2 de Membrana Associada ao Lisossomo/genética , Sistema y+ de Transporte de Aminoácidos , Proteínas de Transporte de Cátions
2.
Redox Biol ; 73: 103176, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38705094

RESUMO

Excitotoxicity is a prevalent pathological event in neurodegenerative diseases. The involvement of ferroptosis in the pathogenesis of excitotoxicity remains elusive. Transcriptome analysis has revealed that cytoplasmic reduced nicotinamide adenine dinucleotide phosphate (NADPH) levels are associated with susceptibility to ferroptosis-inducing compounds. Here we show that exogenous NADPH, besides being reductant, interacts with N-myristoyltransferase 2 (NMT2) and upregulates the N-myristoylated ferroptosis suppressor protein 1 (FSP1). NADPH increases membrane-localized FSP1 and strengthens resistance to ferroptosis. Arg-291 of NMT2 is critical for the NADPH-NMT2-FSP1 axis-mediated suppression of ferroptosis. This study suggests that NMT2 plays a pivotal role by bridging NADPH levels and neuronal susceptibility to ferroptosis. We propose a mechanism by which the NADPH regulates N-myristoylation, which has important implications for ferroptosis and disease treatment.


Assuntos
Ferroptose , NADP , Humanos , NADP/metabolismo , Animais , Aciltransferases/metabolismo , Aciltransferases/genética , Camundongos , Processamento de Proteína Pós-Traducional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA