Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Plant Sci ; 324: 111446, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36041562

RESUMO

Heading date is crucial for rice reproduction and the geographical expansion of cultivation. We fine-mapped qHD5 and identified LOC_Os05g03040, a gene that encodes an AP2 transcription factor, as the candidate gene of qHD5 in our previous study. In this article, using two near-isogenic lines NIL(BG1) and NIL(XLJ), which were derived from the progeny of the cross between BigGrain1 (BG1) and Xiaolijing (XLJ), we verified that LOC_Os05g03040 represses heading date in rice through genetic complementation and CRISPR/Cas9 gene-editing experiments. Complementary results showed that qHD5 is a semi-dominant gene and that the qHD5XLJ and qHD5BG1 alleles are both functional. The homozygous mutant line generated from knocking out qHD5XLJ in NIL(XLJ) headed earlier than NIL(XLJ) under both short-day and long-day conditions. In addition, the homozygous mutant line of qHD5BG1 in NIL(BG1) also headed slightly earlier than NIL(BG1). All of these results show that qHD5 represses the heading date in rice. Transient expression showed that the qHD5 protein localizes to the nucleus. Transactivation activity assays showed that the C-terminus is the critical site that affects self-activation in qHD5XLJ. qRT-PCR analysis revealed that qHD5 represses flowering by down-regulating Ehd2. qHD5 may have been selected during indica rice domestication.


Assuntos
Oryza , Alelos , Mapeamento Cromossômico , Regulação da Expressão Gênica de Plantas , Oryza/metabolismo , Locos de Características Quantitativas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
Front Plant Sci ; 12: 804444, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35126429

RESUMO

Grain size is a key constituent of grain weight and appearance in rice. However, insufficient attention has been paid to the small-effect quantitative trait loci (QTLs) on the grain size. In the present study, residual heterozygous populations were developed for mapping two genetically linked small-effect QTLs for grain size. After the genotyping and the phenotyping of five successive generations, qGS7.1 was dissected into three QTLs and two were selected for further analysis. The qTGW7.2a was finally mapped into a 21.10 kb interval containing four annotated candidate genes. Transcript levels assay showed that the expression of the candidates LOC_Os07g39490 and the LOC_Os07g39500 were significantly reduced in the NIL-qTGW7.2aBG1 . The cytological observation indicated that qTGW7.2a regulated the grain width through controlling the cell expansion. Using the same strategy, qTGW7.2b was fine-mapped into a 52.71 kb interval containing eight annotated candidate genes, showing a significant effect on the grain length and width with opposite allelic directions, but little on the grain weight. Our study provides new genetic resources for yield improvement and for fine-tuning of grain size in rice.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA