Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 11319, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760479

RESUMO

Smoke detectors face the challenges of increasing accuracy, sensitivity, and high reliability in complex use environments to ensure the timeliness, accuracy, and reliability of very early fire detection. The improvement and innovation of the principle and algorithm for smoke particle concentration detection provide opportunities for improving the performance of the detector. This study represents a new refinement of the smoke concentration detection principle based on capacitive detection of cell structures, and detection signals are processed by a multiscale smoke particle concentration detection algorithm to calculate smoke concentration. Through experiments, it was found that the detector provides effective detection of smoke particle concentrations ranging from 0 to 10% obs/m; moreover, when the detection accuracy is greater than a certain number of parts per million (PPM), the sensitivity of the detector can reach the PPM level; furthermore, the detector can detect smoke particle concentrations higher than the PPM level accuracy even in an environment with a certain concentration of petroliferous and dust particles of different sizes.

2.
PLoS One ; 19(5): e0300374, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38753659

RESUMO

Combustible gas concentration detection faces challenges of increasing accuracy, and sensitivity, as well as high reliability in harsh using environments. The special design of the optical path structure of the sensitive element provides an opportunity to improve combustible gas concentration detection. In this study, the optical path structure of the sensitive element was newly designed based on the Pyramidal beam splitter matrix. The infrared light source was modulated by multi-frequency point signal superimposed modulation technology. At the same time, concentration detection results and confidence levels were calculated using the 4-channel combustible gas concentration detection algorithm based on spectral refinement. Through experiment, it is found that the sensor enables full-range measurement of CH4, at the lower explosive limit (LEL, CH4 LEL of 5%), the reliability level is 0.01 parts-per-million (PPM), and the sensor sensitivity is up to 0.5PPM. The sensor is still capable of achieving PPM-level detections, under extreme conditions in which the sensor's optical window is covered by 2/3, and humidity is 85% or dust concentration is 100mg/m3. Those improve the sensitivity, robustness, reliability, and accuracy of the sensor.


Assuntos
Gases , Gases/análise , Algoritmos , Reprodutibilidade dos Testes , Monitoramento Ambiental/instrumentação , Monitoramento Ambiental/métodos , Desenho de Equipamento
3.
Sensors (Basel) ; 24(5)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38475229

RESUMO

Smoke detectors face the challenges of increasing accuracy, sensitivity, and high reliability in complex use environments to ensure the timeliness, accuracy, and reliability of very early fire detection. The improvement in and innovation of the principle and algorithm of smoke particle concentration detection provide an opportunity for the performance improvement in the detector. This study is a new refinement of the smoke concentration detection principle based on capacitive detection of cell structures, and detection signals are processed by a multiscale smoke particle concentration detection algorithm to calculate particle concentration. Through experiments, it is found that the detector provides effective detection of smoke particle concentrations ranging from 0 to 10% obs/m; moreover, the detector can detect smoke particles at parts per million (PPM) concentration levels (at 2 and 5 PPM), and the accuracy of the detector can reach at least the 0.5 PPM level. Furthermore, the detector can detect smoke particle concentrations at better than 1 PPM accuracy even in an environment with 6% obs/m oil gas particles, 7% obs/m large dust interference particles, or 8% obs/m small dust interference particles.

4.
Sensors (Basel) ; 24(2)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38257694

RESUMO

Methane gas concentration detection faces the challenges of increasing accuracy and sensitivity, as well as high reliability in harsh environments. The special design of the optical path structure of the sensitive element provides an opportunity to improve methane gas concentration detection. In this study, the optical path structure of the sensitive element was newly designed based on the Pyramidal beam splitter matrix. The infrared light source was modulated by multi-frequency point-signal superimposed modulation technology. At the same time, concentration detection results and confidence levels were calculated using the four-channel methane gas concentration detection algorithm based on spectral refinement. Through the experiment, it was found that the sensor enables the full-range measurement of CH4; at the lower explosive limit (LEL, CH4 LEL of 5%), the reliability level is 0.01 parts-per-million (PPM), and the limit of detection is 0.5 ppm. The sensor is still capable of achieving PPM-level detections under extreme conditions in which the sensor's optical window is covered by two-thirds and humidity is 85% or dust concentration is 100 mg/m3. Those improve the sensitivity, robustness, reliability, and accuracy of the sensor.

5.
Org Lett ; 25(48): 8716-8721, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-37991479

RESUMO

2-Azidoimines are versatile precursors to value-added vicinal unsymmetrical diamines, which are among the most common motifs in biologically active compounds. Herein, we report their operationally simple synthesis through a highly regioselective intermolecular azidoamination of olefins under metal-free conditions. The approach proceeded through azide and iminyl, two differentiated N-centered radicals. The synthetic potential of the protocols was further established via the condensation/amination sequential cascade and chemoselective, orthogonal transformations to access vicinal primary diamines.

6.
Org Lett ; 24(45): 8271-8276, 2022 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-36346626

RESUMO

A Pd-catalyzed C-O cross-coupling of O-acyl hydroxylamines and tertiary or secondary alkyl electrophiles was reported without the cleavage of the rather fragile N-O bond. The described strategy provides direct access to congested N,N,O-trisubstituted hydroxylamines bearing an α-quaternary carbon center under mild conditions in high yields and features exclusively chemoselective C-O bond formation, a broad substrate scope, and excellent functional group tolerance. The synthetic potential of the cross-coupling was established via pharmaceuticals derivatizations and a series of postcatalytic modifications.


Assuntos
Hidroxilaminas , Paládio , Paládio/química , Catálise , Carbono/química
7.
Molecules ; 24(23)2019 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-31795396

RESUMO

The aim of this study was to prepare sodium alginates (SAs) with different molecular weight and G/M ratio, and characterize their rheological behaviors and emulsifying properties. The result of Fourier transform infrared (FTIR) showed that the chemical bonds among the ß-d-mannuronic acid- (M-), α-l-guluronic acid- (G-), and MG-sequential blocks in the SA chains were not changed significantly by acid treatment. Meanwhile, the molecular weight and G/M ratio of the SA exhibited drastic variation after acid modification. The result of rheological analysis suggesting that the apparent viscosity of SA reduced from 30 to 16.4 mPa.s with the increase of shear rate, reveals that SA solution belongs to pseudoplastic liquid. Also, the apparent viscosity of acid-modified SA solution dropped rapidly with the decrease of the molecular weight. The properties of emulsions stabilized by SA, SA-Ms, and commercial SAs were evaluated via the interface tensiometry and determination of the zeta potential, droplet size, creaming index (CI), and Turbiscan stability index (TSI). Compared with the SA-stabilized emulsion, the interfacial tension of the emulsion stabilized by SA-M increased with the decrease of the molecular weight reduced at the similar M/G ratio. The decrease in zeta potential and the increase in TSI of the emulsion were observed with the decrease of molecular weight, indicating that molecular weight plays an important role on the emulsifying ability of SA. In addition, the SA with low G/M ratio can form emulsions with stable and fine droplets.


Assuntos
Alginatos/química , Ácidos Hexurônicos/química , Emulsões , Reologia
8.
Huan Jing Ke Xue ; 38(7): 2978-2987, 2017 Jul 08.
Artigo em Chinês | MEDLINE | ID: mdl-29964641

RESUMO

In this study, the dynamic variation of the structure, functionality and biodiversity of indigenous microorganism during the CO2-brine-sandstone interaction process was investigated using MiSeq sequencing techniques. The results indicated that some kinds of indigenous microorganisms could grow well under the extreme condition induced by CO2-injection. After injection of CO2, the species of indigenous microorganisms tended to be single and the relative abundance of Proteobacteria reached up to 99.77% after 6 months. The dominant species varied as follows:Pseudomonas sp., Citrobacter sp. and Brevundimonas sp.. Meanwhile, some special genera such as Bacillus sp., Hydrogenophaga sp. and Rhizobium sp. with functionality of iron-reducing and denitrification were found in this study, which may have a potential effect on the capture and storage of CO2. In addition, the Shannon index decreased from 5.3302 to 1.9465 after injection of CO2, suggesting that the biodiversity reduced significantly. Function and main metabolites analysis of bacteria in the CO2-brine-sandstone interaction process showed that bacteria like Bacillus sp., Citrobacter sp. and Pseudomonas sp. could enhance CO2 solubility-trapping process. Bacteria metabolisms could accelerate the dissolution of feldspar and chlorites, and facilitate the formation of transition-state calcite and siderite. Otherwise, the great variation was mainly attributed to the change of condition driven by CO2-brine-sandstone interactions, such as pH and the chemical composition of brine water(anion and cation), etc.


Assuntos
Bactérias/classificação , Dióxido de Carbono , Sais , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA