Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38654098

RESUMO

Cellular senescence is a state of terminal growth arrest associated with the upregulation of different cell cycle inhibitors, mainly p16 and p21, structural and metabolic alterations, chronic DNA damage responses, and a hypersecretory state known as the senescence-associated secretory phenotype (SASP). The SASP is the major mediator of the paracrine effects of senescent cells in their tissue microenvironment and of various local and systemic biological functions. In this Review, we discuss the composition, dynamics and heterogeneity of the SASP as well as the mechanisms underlying its induction and regulation. We describe the various biological properties of the SASP, its beneficial and detrimental effects in different physiological and pathological settings, and its impact on overall health span. Finally, we discuss the use of the SASP as a biomarker and of SASP inhibitors as senomorphic interventions to treat cancer and other age-related conditions.

2.
Carcinogenesis ; 45(6): 399-408, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38306794

RESUMO

Hepatocellular carcinoma (HCC) exhibits a high mortality rate due to its high invasion and metastatic nature, and the acidic microenvironment plays a pivotal role. Acid-sensing ion channel 1 (ASIC1) is upregulated in HCC tissues and facilitates tumor progression in a pH-dependent manner, while the specific mechanisms therein remain currently unclear. Herein, we aimed to investigate the underlying mechanisms by which ASIC1 contributes to the development of HCC. Using bioinformatics analysis, we found a significant association between ASIC1 expression and malignant transformation of HCC, such as poor prognosis, metastasis and recurrence. Specifically, ASIC1 enhanced the migration and invasion capabilities of Li-7 cells in the in vivo experiment using an HCC lung metastasis mouse model, as well as in the in vitro experiments such as wound healing assay and Transwell assay. Furthermore, our comprehensive gene chip and molecular biology experiments revealed that ASIC1 promoted HCC migration and invasion by activating the PRKACA/AP-1 signaling pathway. Our findings indicate that targeting ASIC1 could have therapeutic potential for inhibiting HCC progression.


Assuntos
Canais Iônicos Sensíveis a Ácido , Carcinoma Hepatocelular , Movimento Celular , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas , Invasividade Neoplásica , Transdução de Sinais , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Canais Iônicos Sensíveis a Ácido/genética , Canais Iônicos Sensíveis a Ácido/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Animais , Humanos , Camundongos , Fator de Transcrição AP-1/metabolismo , Fator de Transcrição AP-1/genética , Linhagem Celular Tumoral , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/genética , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Masculino , Prognóstico , Proliferação de Células
3.
Cancer Lett ; 577: 216444, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37844756

RESUMO

Pancreatic acinar cells undergo acinar-to-ductal metaplasia (ADM), a necessary process for pancreatic ductal adenocarcinoma (PDAC) initiation. However, the regulatory role of POH1, a deubiquitinase linked to several types of cancer, in ADM and PDAC is unclear. In this study, we investigated the role of POH1 in ADM and PDAC using murine models. Our findings suggest that pancreatic-specific deletion of Poh1 alleles attenuates ADM and impairs pancreatic carcinogenesis, improving murine survival. Mechanistically, POH1 deubiquitinates and stabilizes the MYC protein, which potentiates ADM and PDAC. Furthermore, POH1 is highly expressed in PDAC samples, and clinical evidence establishes a positive correlation between aberrantly expressed POH1 and poor prognosis in PDAC patients. Targeting POH1 with a specific small-molecule inhibitor significantly reduces pancreatic tumor formation, highlighting POH1 as a promising therapeutic target for PDAC treatment. Overall, POH1-mediated MYC deubiquitination is crucial for ADM and PDAC onset, and targeting POH1 could be an effective strategy for PDAC treatment, offering new avenues for PDAC targeted therapy.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Complexo de Endopeptidases do Proteassoma , Transativadores , Animais , Humanos , Camundongos , Carcinogênese/genética , Carcinogênese/patologia , Carcinoma Ductal Pancreático/patologia , Metaplasia/patologia , Pâncreas/patologia , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Transativadores/antagonistas & inibidores , Transativadores/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Neoplasias Pancreáticas
4.
Opt Express ; 31(19): 30750-30766, 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37710612

RESUMO

Polarized remote sensing imaging has attracted more attention in recent years due to its wider detection information dimension compared to traditional imaging methods. However, the inherent instrument errors in optical systems can lead to errors in the polarization state of the incident and outgoing light, which is the polarization aberration of the optical system, resulting in a decrease in polarization detection accuracy. We propose a polarization aberration simplification calculation method for planar symmetric optical systems, by what only three ray samples are needed to obtain the distribution of polarization aberrations within the pupil. This method has a calculation accuracy close to traditional methods, and the sampling rate is 0.003 times that of traditional methods. Based on this, we designed a merit function that optimizes both wavefront and polarization aberrations simultaneously. It is found that diattenuation and retardance of the optical system are 62% and 58% of the original, and the polarization crosstalk term is reduced by 37% when the polarization weight factor takes an appropriate value. And at the same time, the wavefront aberration has also been well optimized.

5.
Chin J Cancer Res ; 35(4): 386-398, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37691890

RESUMO

Objective: The aim of this study was to investigate the prevalence of sarcopenia (SP) and its relationship with gut microbiota alterations in patients with hematological diseases before and after hematopoietic stem cell transplantation (HSCT). Methods: A total of 108 patients with various hematological disorders were selected from Peking University People's Hospital. SP was screened and diagnosed based on the 2019 Asian Sarcopenia Diagnosis Strategy. Physical measurements and fecal samples were collected, and 16S rRNA gene sequencing was conducted. Alpha and beta diversity analyses were performed to evaluate gut microbiota composition and diversity. Results: After HSCT, significant decreases in calf circumference and body mass index (BMI) were observed, accompanied by a decline in physical function. Gut microbiota analyses revealed significant differences in the relative abundance of Enterococcus, Bacteroides, Blautia and Dorea species before and after HSCT (P<0.05). Before HSCT, sarcopenic patients had lower Dorea levels and higher Phascolarctobacterium levels than non-sarcopenia patients (P<0.01). After HSCT, no significant differences in species abundance were observed. Alpha diversity analysis showed significant differences in species diversity among the groups, with the highest diversity in the post-HSCT 90-day group and the lowest in the post-HSCT 30-day group. Beta diversity analysis revealed significant differences in species composition between pre- and post-HSCT time points but not between SP groups. Linear discriminant analysis effect size (LEfSe) identified Alistipes, Rikenellaceae, Alistipes putredinis, Prevotellaceae defectiva and Blautia coccoides as biomarkers for the pre-HSCT sarcopenia group. Functional predictions showed significant differences in anaerobic, biofilm-forming and oxidative stress-tolerant functions among the groups (P<0.05). Conclusions: This study demonstrated a significant decline in physical function after HSCT and identified potential gut microbiota biomarkers and functional alterations associated with SP in patients with hematological disorders. Further research is needed to explore the underlying mechanisms and potential therapeutic targets.

6.
Front Aging ; 4: 1239945, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37693853

RESUMO

Background: Sarcopenia, defined as the loss of muscle mass and strength, has been associated with increased hospitalization and mortality. Dietary pattern analysis is a whole diet approach which in this study was used to investigate the relationship between diet and sarcopenia. This study aims to estimate the prevalence of sarcopenia and explore possible factors associated with it among a large population in Beijing, China. Methods: A cross-sectional study with 1,059 participants aged more than 50 years was performed. Sarcopenia was defined based on the guidelines of the Asian Working Group for Sarcopenia. The total score of the MNA-SF questionnaire was used to analyse nutrition status. The baseline demographic information, diet structure and eating habits were collected by clinicians trained in questionnaire data collection and anthropometric and bioimpedance measurements. Results: The overall prevalence of sarcopenia was 8.8% and increased with age: 5%, 5.8%, 10.3% and 26.2% in the 50-59, 60-69, 70-79, and ≥80 years groups, respectively. Marital status (with or without a spouse) was not an independent factor associated with sarcopenia adjusted by age and sex. However, nutritional risk or malnutrition, vegetable diet, advanced age and spicy eating habits were risk factors for sarcopenia. Meanwhile, daily fruit, dairy and nut consumption were protective factors against sarcopenia adjusted by age, sex, income status and spouse status. Conclusion: Although further studies are required to explore the association between healthy dietary patterns and the risk of sarcopenia, the present study provides basic data for identifying correlates of sarcopenia in elderly Chinese individual.

7.
Blood Adv ; 7(13): 3099-3112, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-36912760

RESUMO

The effect of aerobic glycolysis remains elusive in pediatric T-cell acute lymphoblastic leukemia (T-ALL). Increasing evidence has revealed that dysregulation of deubiquitination is involved in glycolysis, by targeting glycolytic rate-limiting enzymes. Here, we demonstrated that upregulated deubiquitinase ubiquitin-specific peptidase 1 (USP1) expression correlated with poor prognosis in pediatric primary T-ALL samples. USP1 depletion abolished cellular proliferation and attenuated glycolytic metabolism. In vivo experiments showed that USP1 suppression decreased leukemia progression in nude mice. Inhibition of USP1 caused a decrease in both mRNA and protein levels in lactate dehydrogenase A (LDHA), a critical glycolytic enzyme. Moreover, USP1 interacted with and deubiquitinated polo-like kinase 1 (PLK1), a critical regulator of glycolysis. Overexpression of USP1 with upregulated PLK1 was observed in most samples of patients with T-ALL. In addition, PLK1 inhibition reduced LDHA expression and abrogated the USP1-mediated increase of cell proliferation and lactate level. Ectopic expression of LDHA can rescue the suppressive effect of USP1 silencing on cell growth and lactate production. Pharmacological inhibition of USP1 by ML323 exhibited cell cytotoxicity in human T-ALL cells. Taken together, our results demonstrated that USP1 may be a promising therapeutic target in pediatric T-ALL.


Assuntos
L-Lactato Desidrogenase , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Animais , Criança , Humanos , Camundongos , Linhagem Celular Tumoral , Progressão da Doença , Glicólise/genética , L-Lactato Desidrogenase/genética , Lactato Desidrogenase 5/metabolismo , Lactatos , Camundongos Nus , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Linfócitos T/metabolismo , Proteases Específicas de Ubiquitina/metabolismo , Quinase 1 Polo-Like
8.
Proc Natl Acad Sci U S A ; 119(43): e2206571119, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36252002

RESUMO

Development of mammalian auditory epithelium, the organ of Corti, requires precise control of both cell cycle withdrawal and differentiation. Sensory progenitors (prosensory cells) in the cochlear apex exit the cell cycle first but differentiate last. Sonic hedgehog (Shh) signaling is required for the spatiotemporal regulation of prosensory cell differentiation, but the underlying mechanisms remain unclear. Here, we show that suppressor of fused (Sufu), a negative regulator of Shh signaling, is essential for controlling the timing and progression of hair cell (HC) differentiation. Removal of Sufu leads to abnormal Atoh1 expression and a severe delay of HC differentiation due to elevated Gli2 mRNA expression. Later in development, HC differentiation defects are restored in the Sufu mutant by the action of speckle-type PDZ protein (Spop), which promotes Gli2 protein degradation. Deletion of both Sufu and Spop results in robust Gli2 activation, exacerbating HC differentiation defects. We further demonstrate that Gli2 inhibits HC differentiation through maintaining the progenitor state of Sox2+ prosensory cells. Along the basal-apical axis of the developing cochlea, the Sox2 expression level is higher in the progenitor cells than in differentiating cells and is down-regulated from base to apex as differentiation proceeds. The dynamic spatiotemporal change of Sox2 expression levels is controlled by Shh signaling through Gli2. Together, our results reveal key functions of Gli2 in sustaining the progenitor state, thereby preventing HC differentiation and in turn governing the basal-apical progression of HC differentiation in the cochlea.


Assuntos
Células Ciliadas Auditivas , Proteínas Hedgehog , Animais , Diferenciação Celular/genética , Cóclea/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Células Ciliadas Auditivas/metabolismo , Proteínas Hedgehog/metabolismo , Mamíferos/genética , RNA Mensageiro/metabolismo , Proteína Gli2 com Dedos de Zinco/genética , Proteína Gli2 com Dedos de Zinco/metabolismo
9.
Nat Rev Clin Oncol ; 19(10): 619-636, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36045302

RESUMO

Cellular senescence is a state of stable, terminal cell cycle arrest associated with various macromolecular changes and a hypersecretory, pro-inflammatory phenotype. Entry of cells into senescence can act as a barrier to tumorigenesis and, thus, could in principle constitute a desired outcome for any anticancer therapy. Paradoxically, studies published in the past decade have demonstrated that, in certain conditions and contexts, malignant and non-malignant cells with lastingly persistent senescence can acquire pro-tumorigenic properties. In this Review, we first discuss the major mechanisms involved in the antitumorigenic functions of senescent cells and then consider the cell-intrinsic and cell-extrinsic factors that participate in their switch towards a tumour-promoting role, providing an overview of major translational and emerging clinical findings. Finally, we comprehensively describe various senolytic and senomorphic therapies and their potential to benefit patients with cancer.


Assuntos
Neoplasias , Senoterapia , Carcinogênese , Pontos de Checagem do Ciclo Celular , Senescência Celular/genética , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/terapia
10.
Front Oncol ; 12: 840474, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35719923

RESUMO

Background: Pancreatic ductal adenocarcinoma (PDAC) is characterized by intensive stromal involvement and heterogeneity. Pancreatic cancer cells interact with the surrounding tumor microenvironment (TME), leading to tumor development, unfavorable prognosis, and therapy resistance. Herein, we aim to clarify a gene network indicative of TME features and find a vulnerability for combating pancreatic cancer. Methods: Single-cell RNA sequencing data processed by the Seurat package were used to retrieve cell component marker genes (CCMGs). The correlation networks/modules of CCMGs were determined by WGCNA. Neural network and risk score models were constructed for prognosis prediction. Cell-cell communication analysis was achieved by NATMI software. The effect of the ITGA2 inhibitor was evaluated in vivo by using a KrasG12D -driven murine pancreatic cancer model. Results: WGCNA categorized CCMGs into eight gene coexpression networks. TME genes derived from the significant networks were able to stratify PDAC samples into two main TME subclasses with diverse prognoses. Furthermore, we generated a neural network model and risk score model that robustly predicted the prognosis and therapeutic outcomes. A functional enrichment analysis of hub genes governing gene networks revealed a crucial role of cell junction molecule-mediated intercellular communication in PDAC malignancy. The pharmacological inhibition of ITGA2 counteracts the cancer-promoting microenvironment and ameliorates pancreatic lesions in vivo. Conclusion: By utilizing single-cell data and WGCNA to deconvolute the bulk transcriptome, we exploited novel PDAC prognosis-predicting strategies. Targeting the hub gene ITGA2 attenuated tumor development in a PDAC mouse model. These findings may provide novel insights into PDAC therapy.

12.
Cancer Lett ; 537: 215640, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35296440

RESUMO

Dysregulation of the Hippo pathway that promotes cell survival, proliferation and tumorigenesis, relays on the coordinated interactions of YAP with the factors that determine YAP translocation and the related transcriptional programming. Here, we demonstrate that ETV4, a transcriptional factor participating in various protumorigenic processes, enhances YAP-mediated transactivation and hepatocellular carcinoma (HCC) progression. Mechanistically, the enhancement of YAP activities is mediated by the interaction between ETV4 and YAP, which not only increases nuclear YAP accumulation but also directly augments the YAP/TEAD4-mediated transcriptional activation in tumor cells. Functionally, the interplay of ETV4 and YAP promotes growth of liver tumor cells, and activates the genes related to myeloid cell recruitment, including CXCL1 and CXCL5, leading to an enriched presence of myeloid-derived suppressive cells and macrophages but a decreased infiltration of T cells and NK cells in transplanted tumors. More importantly, the correlations between YAP activation, the altered immune cell distribution and ETV4 expression are observed in human HCCs. Therefore, our study reveals a functional interaction between ETV4 and YAP that contributes to HCC progression, and provides mechanistic insights into the regulation of nuclear YAP retention and transactivation.


Assuntos
Carcinoma Hepatocelular , Proteínas de Ciclo Celular/metabolismo , Neoplasias Hepáticas , Fatores de Transcrição/metabolismo , Carcinogênese/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/patologia , Proteínas Musculares/metabolismo , Proteínas Proto-Oncogênicas c-ets/genética , Fatores de Transcrição de Domínio TEA , Fatores de Transcrição/genética
14.
EMBO J ; 41(6): e108946, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-34985783

RESUMO

Cellular senescence is a state of stable growth arrest and a desired outcome of tumor suppressive interventions. Treatment with many anti-cancer drugs can cause premature senescence of non-malignant cells. These therapy-induced senescent cells can have pro-tumorigenic and pro-disease functions via activation of an inflammatory secretory phenotype (SASP). Inhibitors of cyclin-dependent kinases 4/6 (CDK4/6i) have recently proven to restrain tumor growth by activating a senescence-like program in cancer cells. However, the physiological consequence of exposing the whole organism to pharmacological CDK4/6i remains poorly characterized. Here, we show that exposure to CDK4/6i induces non-malignant cells to enter a premature state of senescence dependent on p53. We observe in mice and breast cancer patients that the CDK4/6i-induced senescent program activates only a partial SASP enriched in p53 targets but lacking pro-inflammatory and NF-κB-driven components. We find that CDK4/6i-induced senescent cells do not acquire pro-tumorigenic and detrimental properties but retain the ability to promote paracrine senescence and undergo clearance. Our results demonstrate that SASP composition is exquisitely stress-dependent and a predictor for the biological functions of different senescence subsets.


Assuntos
Antineoplásicos , Neoplasias da Mama , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Animais , Antineoplásicos/farmacologia , Senescência Celular/fisiologia , Quinase 4 Dependente de Ciclina/genética , Feminino , Humanos , Camundongos , NF-kappa B/genética , NF-kappa B/metabolismo , Proteína Supressora de Tumor p53/genética
15.
Cancer Res ; 81(24): 6087-6089, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34911777

RESUMO

Cellular senescence represents a double-edged sword in cancer and its therapy. On one side, senescence-associated growth arrest and immunomodulatory properties exert potent antimalignant functions. On the other side, senescence bypass and secretory phenotype are associated with tumor progression and relapse. Recent studies have demonstrated the enormous potential to combine pro- to antisenescence interventions as a new anticancer approach. However, the heterogeneity of senescence-associated features makes definition and targeting of therapy-induced senescent cells a challenging task. Here, we describe these challenges and discuss how to exploit senescence-associated features to improve treatment efficacy and tolerability.


Assuntos
Antineoplásicos/uso terapêutico , Senescência Celular , Imunomodulação , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Humanos , Neoplasias/imunologia
16.
Aging Cell ; 20(10): e13450, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34598318

RESUMO

Cells expressing high levels of the cyclin-dependent kinase (CDK)4/6 inhibitor p16 (p16High ) accumulate in aging tissues and promote multiple age-related pathologies, including neurodegeneration. Here, we show that the number of p16High cells is significantly increased in the central nervous system (CNS) of 2-year-old mice. Bulk RNAseq indicated that genes expressed by p16High cells were associated with inflammation and phagocytosis. Single-cell RNAseq of brain cells indicated p16High cells were primarily microglia, and their accumulation was confirmed in brains of aged humans. Interestingly, we identified two distinct subpopulations of p16High microglia in the mouse brain, with one being age-associated and one present in young animals. Both p16High clusters significantly differed from previously described disease-associated microglia and expressed only a partial senescence signature. Taken together, our study provides evidence for the existence of two p16-expressing microglia populations, one accumulating with age and another already present in youth that could positively and negatively contribute to brain homeostasis, function, and disease.


Assuntos
Envelhecimento , Senescência Celular/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Microglia/metabolismo , Animais , Modelos Animais de Doenças , Humanos , Camundongos
17.
Cancer Lett ; 518: 266-277, 2021 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-34339800

RESUMO

Dysregulated ubiquitination of tumor-related proteins plays a critical role in tumor development and progression. The deubiquitinase USP22 is aberrantly expressed in certain types of cancer and contributes to aggressive tumor progression. However, the precise mechanism underlying the pro-tumorigenic function of USP22 in hepatocellular carcinoma (HCC) remains unclear. Here, we report that E2F6, a pocket protein-independent transcription repressor, is essential for HCC cell growth, and that its activities are controlled by USP22-mediated deubiquitination. USP22 interacts with and stabilizes E2F6, resulting in the transcriptional repression of phosphatase DUSP1. Moreover, the process involving DUSP1 repression by E2F6 strengthens AKT activation in HCC cells. Therefore, these findings provide mechanistic insights into the USP22-mediated control of oncogenic AKT signaling, emphasizing the importance of USP22-E2F6 regulation in HCC development.


Assuntos
Carcinoma Hepatocelular/genética , Proliferação de Células/genética , Fator de Transcrição E2F6/genética , Neoplasias Hepáticas/genética , Proteínas Proto-Oncogênicas c-akt/genética , Ubiquitina Tiolesterase/genética , Ubiquitinação/genética , Animais , Carcinoma Hepatocelular/patologia , Linhagem Celular , Linhagem Celular Tumoral , Expressão Gênica/genética , Células HEK293 , Células Hep G2 , Humanos , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Camundongos Nus , Monoéster Fosfórico Hidrolases/genética , Transdução de Sinais/genética , Transcrição Gênica/genética
18.
Nat Commun ; 12(1): 4852, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34381028

RESUMO

Oncogenic activation of KRAS and its surrogates is essential for tumour cell proliferation and survival, as well as for the development of protumourigenic microenvironments. Here, we show that the deubiquitinase USP12 is commonly downregulated in the KrasG12D-driven mouse lung tumour and human non-small cell lung cancer owing to the activation of AKT-mTOR signalling. Downregulation of USP12 promotes lung tumour growth and fosters an immunosuppressive microenvironment with increased macrophage recruitment, hypervascularization, and reduced T cell activation. Mechanistically, USP12 downregulation creates a tumour-promoting secretome resulting from insufficient PPM1B deubiquitination that causes NF-κB hyperactivation in tumour cells. Furthermore, USP12 inhibition desensitizes mouse lung tumour cells to anti-PD-1 immunotherapy. Thus, our findings propose a critical component downstream of the oncogenic signalling pathways in the modulation of tumour-immune cell interactions and tumour response to immune checkpoint blockade therapy.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Neoplasias Pulmonares/terapia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Microambiente Tumoral/imunologia , Ubiquitina Tiolesterase/metabolismo , Animais , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/terapia , Quimiocinas/metabolismo , Regulação para Baixo , Humanos , Tolerância Imunológica , Imunoterapia , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Proteína Fosfatase 2C/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Ubiquitina Tiolesterase/antagonistas & inibidores
19.
Oncogene ; 40(36): 5482-5494, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34294846

RESUMO

K-RAS mutation and molecular alterations of its surrogates function essentially in lung tumorigenesis and malignant progression. However, it remains elusive how tumor-promoting and deleterious events downstream of K-RAS signaling are coordinated in lung tumorigenesis. Here, we show that USP16, a deubiquitinase involved in various biological processes, functions as a promoter for the development of K-RAS-driven lung tumor. Usp16 deletion significantly attenuates K-rasG12D-mutation-induced lung tumorigenesis in mice. USP16 upregulation upon RAS activation averts reactive oxygen species (ROS)-induced p38 activation that would otherwise detrimentally influence the survival and proliferation of tumor cells. In addition, USP16 interacts with and deubiquitinates JAK1, and thereby promoting lung tumor growth by augmenting JAK1 signaling. Therefore, our results reveal that USP16 functions critically in the K-RAS-driven lung tumorigenesis through modulating the strength of p38 and JAK1 signaling.


Assuntos
Carcinogênese , Neoplasias Pulmonares , Animais , Transformação Celular Neoplásica , Humanos , Janus Quinase 1 , Camundongos
20.
JMIR Public Health Surveill ; 7(5): e28726, 2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-33938812

RESUMO

BACKGROUND: Beekeeping and honey gathering are traditional forms of agricultural farming in China. However, only few studies have focused on the nutritional status and health level of this special occupational group. OBJECTIVE: By comparing the health status of apiculturists (beekeepers) and vegetable farmers in plain areas of Hubei Province, and analyzing the influence of dietary structure and intake on their nutritional level, this paper provides a scientific theoretical basis for the further development of health education and disease prevention for beekeepers. METHODS: From February to April 2016, 191/236 beekeepers (80.9% of the total beekeepers) with large-scale breeding (300-500 colonies) and 182 vegetable farmers in the same area were sampled by the cluster sampling method. Their nutrient composition was analyzed using a human body composition analyzer, dietary structure information was collected using the dietary frequency query method, and cognitive function was investigated. In addition, blood samples of both groups were collected. RESULTS: A total of 362 valid questionnaires (beekeepers/vegetable farmers: 185/177) were collected, with an effective response rate of 97.1% (362/373). Both beekeepers and vegetable farmers were overweight, and the beekeepers' grip strength was much stronger than that of the vegetable farmers' regardless of gender. The dietary structure of beekeepers is very unique: 29.7% (55/185) of beekeepers indicated consuming royal jelly regularly for more than 10 years. Their main foods are grain, cereals, and fresh vegetables; 68.1% (126/185) of the beekeepers never drank milk and other dairy products, and their overall nutrient intake is unbalanced. The average intake of cellulose in this group was also significantly higher than that in the epidemiological survey in the same sex and age group. The intake of vitamin A and selenium in the beekeepers group was significantly higher than that in the vegetable-farmers group (all P<.001). The blood indices of creatinine (P=.03) and blood copper (P<.001) in the beekeepers group were significantly higher than those in the vegetable-farmers group, and the total protein, albumin, calcium, sodium, potassium, phosphorus, folic acid, and vitamin B12 in the beekeepers group were significantly lower than those in the vegetable-farmers group (P<.03 for potassium and P<.001 for others). The total Mini-Mental State Examination (MMSE) score of the beekeepers group was 28.1, significantly higher (P=.006) than that of the vegetable-farmers group (23.3). CONCLUSIONS: The beekeepers in this area have their special dietary structure, body nutrient level, and disease characteristics. The cognitive level of the beekeepers who regularly consume royal jelly is significantly higher than that of their peers. The chronic diseases of this special occupational group are closely related to their lifestyle and nutritional status, so more attention and in-depth studies are needed to improve the quality of life of this population.


Assuntos
Criação de Abelhas , Dieta , Estado Nutricional , China , Inquéritos Epidemiológicos , Humanos , Qualidade de Vida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA