Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nanoscale Adv ; 6(12): 3073-3081, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38868825

RESUMO

All-inorganic metal halide perovskites (MHPs) have attracted increasing attention because of their high thermal stability and band gap tunability. Among them, CsPbCl3 is considered a promising semiconductor material for visible-ultraviolet dual-band photodetectors because of its excellent photoelectric properties and suitable band gap value. In this work, we fabricated a visible-ultraviolet dual-band photodetector based on a CsPbCl3/p-GaN heterojunction using the spin coating method. The formation of the heterojunction enables the device to exhibit obvious dual-band response behavior at positive and negative bias voltages. At the same time, the dark current of the device can be as low as 2.42 × 10-9 A, and the corresponding detection rate can reach 5.82 × 1010 Jones. In addition, through simulation calculations, it was found that the heterojunction has a type II energy band arrangement, and the heterojunction response band light absorption is significantly enhanced. The type II energy band arrangement will separate electron-hole pairs more effectively, which will help improve device performance. The successful implementation of visible-ultraviolet dual-band photodetectors based on a CsPbCl3/p-GaN heterojunction provides guidance for the application of all-inorganic MHPs in the field of multi-band photodetectors.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38656637

RESUMO

AIM: Aberrant expression of ATPase sarcoplasmic/endoplasmic retic Ca2+ transporting 2 (ATP2A2) has attracted attention for its pathophysiologic role in pulmonary hypertension (PH). Several miRNAs, including miR-210-5p, have also been reported to be pathogenic factors in PH, but their exact mechanisms remain unknown. This study aimed to elucidate the potential mechanisms of miR-210-5p and ATP2A2 in MCT-induced PH. METHODS: Eighteen Sprague-Dawley rats were randomly divided into two groups-monoclonal (MCT) group and control group-and then administered MCT (60 mg/kg) and saline, respectively. mPAP, PVR, RVHI, WT%, and WA% were significantly increased in PH rats after 3 weeks, confirming that the modeling of PH rats was successful. Subsequently, we determined the expression of ATP2A2 and miR-210-5p in lung tissues using WB and qRT-PCR methods. We established an in vitro model using BMP4 and TGF-ß1 treatment of pulmonary artery smooth muscle cells (PASMCs) and examined the expression of ATP2A2 and miR-210-5p using the same method. To further elucidate the regulatory relationship between ATP2A2 and miR-210-5p, we altered the expression level of miR-210-5p and detected the corresponding changes in ATP2A2 levels. In addition, we demonstrated the relationship by dual luciferase experiments. Finally, the effect of silencing ATP2A2 could be confirmed by the level of cell membrane Ca2+ in PAMSCs. RESULTS: Up-regulation of miR-210-5p and down-regulation of ATP2A2 were observed in the MCT group compared with the control group, which was confirmed in the in vitro model. In addition, elevated miR-210-5p expression decreased the level of ATP2A2 while increasing the proliferation of PASMCs, and the results of the dual luciferase assay further confirmed that ATP2A2 is a downstream target of miR-210-5p. Additionally, silencing ATP2A2 resulted in increased cytoplasmic Ca2+ levels in PAMSCs. CONCLUSION: In MCT-induced PH, miR-210-5p promotes pulmonary vascular remodeling by inhibiting ATP2A2.

3.
Scand J Gastroenterol ; 59(4): 480-488, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38179969

RESUMO

Objective: To examine the impact of moderate alcohol consumption on the progression of chronic kidney disease (CKD) in individuals diagnosed with non-alcoholic fatty liver disease (NAFLD), as NAFLD has been identified as an autonomous risk factor for CKD and previous research has demonstrated a reduction in overall mortality in NAFLD patients who consume alcohol in moderation.Methods: This study included participants from ten consecutive rounds of the National Health and Nutrition Examination Survey (NHANES:1998-2018). Multivariate logistic regression models were employed to assess the impact of moderate alcohol consumption on chronic kidney disease (CKD) in both male and female populations. Subgroup analysis was conducted by categorizing patients with non-alcoholic fatty liver disease (NAFLD) based on the Fibrosis-4 (FIB-4) index.Results: 17040 participants were eligible to be included in the study. The logistic regression analysis model showed that moderate alcohol consumption was a protective factor for CKD in male NAFLD patients, with an unadjusted OR: 0.37 (0.22,0.65), and p < 0.001. After further adjustment, the association persisted. However, the association was not significant in female patients with NAFLD. Among men with low risk of liver fibrosis group, moderate alcohol consumption remained a protective factor for CKD (OR = 0.32, 95% CI 0.12-0.84, p = 0.02), but the association was not significant in the high risk of liver fibrosis group. In female patients, both moderate alcohol consumption and excessive alcohol consumption were not significantly associated with CKD in either the low-risk group or the high-risk group.Conclusion: Moderate alcohol consumption is associated with a lower prevalence of CKD in men with NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Insuficiência Renal Crônica , Humanos , Masculino , Feminino , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/epidemiologia , Inquéritos Nutricionais , Insuficiência Renal Crônica/epidemiologia , Insuficiência Renal Crônica/etiologia , Consumo de Bebidas Alcoólicas/efeitos adversos , Consumo de Bebidas Alcoólicas/epidemiologia , Cirrose Hepática/complicações
4.
Gels ; 9(12)2023 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-38131973

RESUMO

The hard-healing chronic wounds of diabetics are still one of the most intractable problems in clinical skin injury repair. Wound microenvironments directly affect wound healing speed, but conventional dressings exhibit limited efficacy in regulating the wound microenvironment and facilitating healing. To address this serious issue, we designed a thermo-sensitive drug-controlled hydrogel with wound self-adjusting effects, consisting of a sodium alginate (SA), Antheraeapernyi silk gland protein (ASGP) and poly(N-isopropylacrylamide) (PNIPAM) for a self-adjusting microenvironment, resulting in an intelligent releasing drug which promotes skin regeneration. PNIPAM has a benign temperature-sensitive effect. The contraction, drugs and water molecules expulsion of hydrogel were generated upon surpassing lower critical solution temperatures, which made the hydrogel system have smart drug release properties. The addition of ASGP further improves the biocompatibility and endows the thermo-sensitive drug-controlled hydrogel with adhesion. Additionally, in vitro assays demonstrate that the thermo-sensitive drug-controlled hydrogels have good biocompatibility, including the ability to promote the adhesion and proliferation of human skin fibroblast cells. This work proposes an approach for smart drug-controlled hydrogels with a thermo response to promote wound healing by self-adjusting the wound microenvironment.

5.
Gen Physiol Biophys ; 42(5): 417-429, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37702447

RESUMO

Myocardial fibrosis is an underlying cause of many cardiovascular diseases. Novel insights into the epigenetic control of myocardial fibrosis are now emerging. The current work is focused on investigating the biological role of DNA methyltransferase 1 (DNMT1) in myocardial fibrosis as well as the underlying mechanism. Our findings revealed that DNMT1 expression levels were upregulated, whereas miR-133b expression levels were decreased in a rat model of myocardial fibrosis following myocardial infarction. In vitro, the expression levels of DNMT1 increased and those of miR-133b decreased after Ang-II treatment in cardiac fibroblasts. DNMT1 knockdown inhibited Ang-II-induced cardiac myofibroblast activation, and DNMT1 overexpression increased the proliferation and collagen generation of cardiac myofibroblasts. Furthermore, DNMT1 expression levels decreased, while miR-133b expression levels increased after treatment with 5-Aza (5-Azacytidine, a known inhibitor of DNA methylation) in Ang-II-induced cardiac fibroblasts. BSP (Bisulfite sequencing PCR) results showed a marked decrease in methylation levels in the miR-133b promoter region upon overexpression of DNMT1, whereas knockdown of DNMT1 blocked increased methylation levels in the miR-133b promoter region in Ang-II-induced cardiac fibroblasts. Finally, 5-Aza treatment reduced the progression of myocardial fibrosis after myocardial infarction in rats in vivo. Collectively, our results suggest that DNMT1 mediates CTGF expression in cardiac fibroblast activation by regulating the methylation of miR-133b. The present work reveals the unique role of the DNMT1/miR-133b/CTGF axis in myocardial fibrosis, thus suggesting its great therapeutic potential in the treatment of cardiac diseases.


Assuntos
MicroRNAs , Infarto do Miocárdio , Animais , Ratos , Azacitidina/farmacologia , Metilação de DNA , Fibrose , Coração , MicroRNAs/genética , Infarto do Miocárdio/genética
6.
Sci Rep ; 13(1): 15561, 2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37730950

RESUMO

It has been demonstrated that lactate/albumin (L/A) ratio is substantially relevant to the prognosis of sepsis, septic shock, and heart failure. However, there is still debate regarding the connection between the L/A ratio and severe acute myocardial infarction (AMI). The aim of this study is to determine the prognostic role of L/A ratio in patients with severe AMI. Our retrospective study extracted data from the Medical Information Mart for Intensive Care III (MIMIC-III) database, included 1,134 patients diagnosed with AMI. Based on the tertiles of L/A ratio, the patients were divided into three groups: Tertile1 (T1) group (L/A ratio<0.4063, n=379), Tertile2 (T2) group (0.4063≤L/A ratio≤0.6667, n =379), and Tertile3 (T3) group (L/A ratio>0.6667, n =376). Uni- and multivariate COX regression model were used to analyze the relationship between L/A ratio and 14-day, 28-day and 90-day all-cause mortality. Meanwhile, the restricted cubic spline (RCS) model was used to evaluate the effect of L/A ratio as a continuous variable. Higher mortality was observed in AMI patients with higher L/A ratio. Multivariate Cox proportional risk model validated the independent association of L/A ratio with 14-day all-cause mortality [hazard ratio (HR) 1.813, 95% confidence interval (CI) 1.041-3.156 (T3 vs T1 group)], 28-day all-cause mortality [HR 1.725, 95% CI 1.035-2.874 (T2 vs T1 group), HR 1.991, 95% CI 1.214-3.266 (T3 vs T1 group)], as well as 90-day all-cause mortality [HR 1.934, 95% CI 1.176-3.183 (T2 vs T1 group), HR 2.307, 95% CI 1.426-3.733 (T3 vs T1 group)]. There was a consistent trend in subgroup analysis. The Kaplan-Meier (K-M) survival curves indicated that patients with L/A ratio>0.6667 had the highest mortality. Even after adjusting the confounding factors, RCS curves revealed a nearly linearity between L/A ratio and 14-day, 28-day and 90-day all-cause mortality. Meanwhile, the areas under the receiver operating characteristic (ROC) curve (AUC) of 14-day, 28-day and 90-day all-cause mortality were 0.730, 0.725 and 0.730, respectively. L/A ratio was significantly associated with 14-day, 28-day and 90-day all-cause mortality in critical patients with AMI. Higher L/A ratio will be considered an independent risk factor for higher mortality in AMI patients.


Assuntos
Ácido Láctico , Infarto do Miocárdio , Humanos , Estudos Retrospectivos , Albuminas , Cuidados Críticos
7.
Sci Rep ; 13(1): 2597, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36788332

RESUMO

Low heart rate is a risk factor of mortality in many cardiovascular diseases. However, the relationship of minimum heart rate (MHR) with outcomes after cardiac surgery is still unclear, and the association between optimum MHR and risk of mortality in patients receiving cardiac surgery remains unknown. In this retrospective study using the Multi-parameter Intelligent Monitoring in Intensive Care (MIMIC-III) database, 8243 adult patients who underwent cardiac surgery were included. The association between MHR and the 30-day, 90-day, 180-day, and 1-year mortality of patients undergoing cardiac surgery was analyzed using multivariate Cox proportional hazard analysis. As a continuous variable, MHR was evaluated using restricted cubic regression splines, and appropriate cut-off points were determined. Kaplan-Meier curve was used to further explore the relationship between MHR and prognosis. Subgroup analyses were performed based on age, sex, hypertension, diabetes, and ethnicity. The rates of the 30-day, 90-day, 180-day, and 1-year mortalities of patients in the low MHR group were higher than those in the high MHR group (4.1% vs. 2.9%, P < 0.05; 6.8% vs. 5.3%, P < 0.05; 8.9% vs. 7.0%, P < 0.05, and 10.9% vs. 8.8%, P < 0.05, respectively). Low MHR significantly correlated with the 30-day, 90-day, 180-day, and 1-year mortality after adjusting for confounders. A U-shaped relationship was observed between the 30-day, 90-day, 180-day, and 1-year mortality and MHR, and the mortality was lowest when the MHR was 69 bpm. Kaplan-Meier curve analysis also indicated that low MHR had poor prognosis in patients undergoing cardiac surgery. According to subgroup analyses, the effect of low MHR on post-cardiac surgery survival was restricted to patients who were < 75 years old, male, without hypertension and diabetes, and of White ethnicity. MHR (69 bpm) was associated with better 30-day, 90-day, 180-day, and 1-year survival in patients after cardiac surgery. Therefore, effective HR control strategies are required in this high-risk population.


Assuntos
Procedimentos Cirúrgicos Cardíacos , Frequência Cardíaca , Complicações Pós-Operatórias , Adulto , Idoso , Humanos , Masculino , Procedimentos Cirúrgicos Cardíacos/efeitos adversos , Cuidados Críticos , Diabetes Mellitus , Hipertensão , Prognóstico , Estudos Retrospectivos , Complicações Pós-Operatórias/mortalidade
8.
ACS Appl Mater Interfaces ; 14(49): 54676-54687, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36454716

RESUMO

Daytime radiative cooling is a promising passive cooling technology for combating global warming. Existing daytime radiative coolers usually show whitish colors due to their high broadband solar reflectivity, which is not suitable for aesthetic demands and effective display. It is challenging to produce high-cooling performance materials with vivid colors because colors are often produced by the absorption of visible light, decreasing net cooling power. In this work, we design a series of colorful multilayered radiative coolers (CMRCs) consisting of an optimized selective emitter for cooling and coupled nanocavities for structural coloration, which can successfully delicately balance the trade-off between the chromaticity and cooling performance. By judiciously designing the geometric parameters and manipulating the coupling effect inside the coupled nanocavities, our coolers show sub-ambient cooling performance and a larger color gamut (occupying 17.7% sRGB area) than reported ones. We further fabricate CMRCs and demonstrate that they have temperature drops of 3.4-4.4 °C on average based on outdoor experiments. These CMRCs are promising in thermal management of electronic/optoelectronic devices and outdoor facilities.

9.
Nanomaterials (Basel) ; 12(17)2022 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-36080108

RESUMO

One-way water transport is a predominant feature of comfortable textiles used in daily life. However, shortcomings related to the textiles include their poor breathability and durability. In this study, low-cost and eco-friendly PLA/low-melt (polylactic acid) LMPLA-thermoplastic polyurethane (TPU) membranes were fabricated through a needle punch/hot press and electrospinning method. The micro-/nano-channels, used for the first time, endowed the composite membranes with robust, breathable, moisture-permeable, and abrasion-resistant performance. By varying the nano- layer thickness, the resulting 16-40 µm membranes exhibited excellent one-way water transport, robust breathability and moisture permeability, and good abrasion resistance. Nano-layer thickness was found to be a critical performance factor, balancing comfort and protection. These results may be useful for developing low-cost, eco-friendly, and versatile protective products for medical application.

10.
Front Cardiovasc Med ; 9: 942485, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36017092

RESUMO

Background: Base excess (BE) represents an increase or decrease of alkali reserves in plasma to diagnose acid-base disorders, independent of respiratory factors. Current findings about the prognostic value of BE on mortality of patients with acute myocardial infarction (AMI) are still unclear. The purpose of this study was to explore the prognostic significance of BE for short-term all-cause mortality in patients with AMI. Methods: A total of 2,465 patients diagnosed with AMI in the intensive care unit from the Medical Information Mart for Intensive Care III (MIMIC-III) database were included in our study, and we explored the association of BE with 28-day and 90-day all-cause mortality using Cox regression analysis. We also used restricted cubic splines (RCS) to evaluate the relationship between BE and hazard ratio (HR). The primary outcomes were 28-day and 90-day all-cause mortality. Results: When stratified according to quantiles, low BE levels at admission were strongly associated with higher 28-day and 90-day all-cause mortality. Multivariable Cox proportional hazard models revealed that low BE was an independent risk factor of 28-day all-cause mortality [HR 4.158, 95% CI 3.203-5.398 (low vs. normal BE) and HR 1.354, 95% CI 0.896-2.049 (high vs. normal BE)] and 90-day all-cause mortality [HR 4.078, 95% CI 3.160-5.263 (low vs. normal BE) and HR 1.369, 95% CI 0.917-2.045 (high vs. normal BE)], even after adjustment for significant prognostic covariates. The results were also consistent in subgroup analysis. RCS revealed an "L-type" relationship between BE and 28-day and 90-day all-cause mortality, as well as adjusting for confounding variables. Meanwhile, Kaplan-Meier survival curves were stratified by combining BE with carbon dioxide partial pressure (PaCO2), and patients had the highest mortality in the group which had low BE (< 3.5 mEq/L) and high PaCO2 (> 45 mmHg) compared with other groups. Conclusion: Our study revealed that low BE was significantly associated with 28-day and 90-day mortality in patients with AMI and indicated the value of stratifying the mortality risk of patients with AMI by BE.

11.
Gels ; 8(7)2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35877483

RESUMO

The Antheraea Pernyi silk gland protein originates from natural organisms and synthesized by tussah silk glands and has widely potential biomaterial applications due to the superior biocompatibility. This study investigates the Antheraea Pernyi silk gland protein-based drug-loaded bio-hydrogels for bioengineered tissue fabricated by using an eco-friendly method without the harsh extracting process and the usage of toxic chemicals. The drug-loaded bio-hydrogels exhibited a porous structure and interconnected pore walls. The swelling ratio and water absorption of drug-loaded bio-hydrogels were, respectively, above 95% and 1.5 × 103%. The cumulative release of drug loaded hydrogels all reached more than 90% within 4 h, and this indicates the potential of drug-loaded hydrogels as future drug-carrying biomaterials. RSC96 Schwann cells cultured on drug-loaded hydrogels for 72 h under cell culture medium show no toxic effects and more pro-proliferative effects. The results suggest the suitability of drug-loaded bio-hydrogels as natural biopolymer for the potential in vitro RSC96 cell culture platform and other biomaterial applications.

12.
Int J Biol Macromol ; 200: 362-369, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34973986

RESUMO

Araneid spider silk glands can spin seven silk types that have task-specific properties owing to the higher order structure of spider silk proteins. This gives silks superior potential as novel biomaterials. Nephila pilipes, the giant golden orb-weaver, is one of the largest spiders and spins silk with exceptional torsional deformation, toughness, and other properties to support its mass; further investigation relies on a complete amino acid sequence. However, there are no full-length N. pilipes spidroin sequences; in fact, across species, most sequences remain fragmentary because of repetitive region assembly difficulties in short-read sequencing. Here, we develop a hybrid sequencing method that utilizes short-read sequencing to identify seven spidroin terminals in N. pilipes, and long-read sequencing to confirm the full-length pyriform spidroin 1 (PySp1) gene. PySp1 is 11,181 base pairs, with a single exon encoding a 3,726 amino acid protein, the QQ(x)4Qx motif, and lower repeat homogenization, distinct characteristics of genera Nephilinae PySp1. The full-length N. pilipes PySp1 sequences sheds light on spidroin evolution and demonstrates a helpful strategy to find full-length spidroins.


Assuntos
Fibroínas
13.
Front Microbiol ; 13: 1091502, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36687595

RESUMO

Tardigrades, known colloquially as water bears or moss piglets, are diminutive animals capable of surviving many extreme environments, even been exposed to space in low Earth orbit. Recently termed tardigrade disordered proteins (TDPs) include three families as cytoplasmic-(CAHS), secreted-(SAHS), and mitochondrial-abundant heat soluble (MAHS) proteins. How these tiny animals survive these stresses has remained relatively mysterious. Cyanobacteria cast attention as a "microbial factory" to produce biofuels and high-value-added chemicals due to their ability to photosynthesis and CO2 sequestration. We explored a lot about biofuel stress and related mechanisms in Synechocystis sp. PCC 6803. The previous studies show that CAHS protein heterogenous expression in bacteria, yeast, and human cells increases desiccation tolerance in these hosts. In this study, the expression of three CAHS proteins in cyanobacterium was found to affect the tolerance to biofuels, while the tolerance to Cd2+ and Zn2+ were slightly affected in several mutants. A quantitative transcriptomics approach was applied to decipher response mechanisms at the transcriptional level further.

14.
Gels ; 9(1)2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36661772

RESUMO

To improve the versatility of the sodium alginate-loaded bio-hydrogels, Antheraea pernyi silk gland protein/sodium alginate drug-loaded hydrogels were prepared by using an eco-friendly multiple network cross-link technology. Fourier transform infrared (FT-IR) spectroscopy and UV-Vis spectrophotometer were used separately to evaluate the chemical structure and drug release behavior of drug-loaded hydrogels. The antibacterial drug carrier gels were evaluated by using inhibition zone test against the S. aureus and E. coli. The CCK-8 assay was used to assess the biocompatibility of drug loaded hydrogels. The FT-IR results showed that there was a strong interaction within the drug loaded hydrogels, and the ASGP was beneficial to enhance the interaction within the drug loaded hydrogels. UV-Vis spectrophotometer results indicated the cumulative release reached 80% within 400 min. Antibacterial bio-hydrogels had a good antibacterial property, especially the antibacterial bio-hydrogels with bacitracin exhibits superior to other antibacterial agents. The drug-loaded bio-hydrogels exhibited the adhesion and proliferation of RSC96 cells and perfected biocompatibility. This provides a new idea for further research and development of tissue-friendly drug-loaded biomaterials.

15.
Nano Lett ; 21(14): 6102-6110, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34269592

RESUMO

Realization of electromagnetic energy confinement beyond the diffraction limit is crucial for high-performance on-chip devices. Herein we construct an array of nonradiative anapoles that originate from the destructive far-field interference of electric and toroidal dipole modes to achieve ultracompact and high-efficiency electromagnetic energy transfer without the coupler. We experimentally investigate the proposed metachain at mid-infrared frequencies and give the first near-field experimental evidence of anapole-based energy transfer, in which the spatial profile of the anapole mode is also unambiguously identified on the nanoscale. We further demonstrate that the metachain is intrinsically lossless and scalable at infrared wavelengths, realizing a 90° bending loss down to 0.32 dB at the optical communication wavelength. The present scheme bridges the gap between the energy confinement and the transfer of anapoles and opens a new gate for more compactly integrated photonic and energy devices, which can operate in a broad spectral range.

16.
Polymers (Basel) ; 14(1)2021 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-35012130

RESUMO

Antheraea pernyi silk fibroin (ASF)-based nanofibers have wide potential for biomaterial applications due to superior biocompatibility. It is not clear whether the ASF-based nanofibers scaffold can be used as an in vitro cancer cell culture platform. In the current study, we fabricated novel ASF-based thermoresponsive hydrogel nanofibers by aqueous electrospinning for colon cancer (LoVo) cells culture. ASF was reacted with allyl glycidyl ether (AGE) for the preparation of allyl silk fibroin (ASF-AGE), which provided the possibility of copolymerization with allyl monomer. The investigation of ASF-AGE structure by 1H NMR revealed that reactive allyl groups were successfully linked with ASF. ASF-based thermoresponsive hydrogel nanofibers (p (ASF-AGE-NIPAAm)) were successfully manufactured by aqueous electrospinning with the polymerization of ASF and N-isopropylacrylamide (NIPAAm). The p (ASF-AGE-NIPAAm) spinning solution showed good spinnability with the increase of polymerization time, and uniform nanofibers were formed at the polymerization time of 360 min. The obtained hydrogel nanofibers exhibited good thermoresponsive that the LCST was similar with PNIPAAm at about 32 °C, and good degradability in protease XIV PBS solution. In addition, the cytocompatibility of colon cancer (LoVo) cells cultured in hydrogel nanofibers was assessed. It was demonstrated that LoVo cells grown on hydrogel nanofibers showed improved cell adhesion, proliferation, and viability than those on hydrogel. The results suggest that the p (ASF-AGE-NIPAAm) hydrogel nanofibers have potential application in LoVo cells culture in vitro. This study demonstrates the feasibility of fabricating ASF-based nanofibers to culture LoVo cancer cells that can potentially be used as an in vitro cancer cell culture platform.

17.
RSC Adv ; 11(45): 28401-28409, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-35480775

RESUMO

At present, Antheraea pernyi silk fibroin (ASF) based hydrogels have wide potential applications as biomaterials because of their superior cytocompatibility. Herein, ASF is used as a nucleophilic reagent, reacted with allyl glycidyl ether (AGE) for the preparation of allyl silk fibroin (ASF-AGE). The investigation of ASF-AGE structure by 1H NMR and FTIR are revealed that reactive allyl groups were obtained on ASF by nucleophilic substitution. A series of ASF based hydrogels are manufactured by N-isopropylacrylamide (NIPAAm) copolymerization bridged with ASF-AGE. By the silk fibroin self-assembly process, stably physical cross-linked hydrogels are formed without any crosslinking agent. These hydrogels exhibit good thermoresponsive and degradability, for which the LCST was about 32 °C, and these hydrogels can be degraded in protease XIV solution. Excellent cell proliferation, viability and morphology is demonstrated for b End.3 cells on the hydrogels by the characteristic MTT assay, CLSM and SEM. The cytocompatibility of b End.3 cells was demonstrated with excellent cell adhesion and growth on these ASF based hydrogels in vitro. These degradable and thermoresponsive ASF based hydrogels may find potential applications for cells delivery devices and tissue engineering.

18.
Materials (Basel) ; 12(15)2019 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-31370236

RESUMO

Ultrafine grained WC-12Co-0.2VC (named UYG12V) cemented carbides were prepared via the two-step spark plasma sintering (SPS) in this study. First, the effects of the sintering temperature on the relative density and WC grain size of UYG12V cemented carbides were studied. The results show that regular WC grains form when sintered at 1300 °C. The sintered body begins to rapidly densify and WC grains grow slowly when sintered at 1200 °C. Thus, the first-step (T1) and the second-step (T2) temperatures in the two-step SPS of UYG12V are 1300 °C and 1200 °C, respectively. The effect of the holding time during the first and second steps on the mechanical properties was also studied. The results show that the UYG12V cemented carbide sintered at 1300 °C for 3 min and then at 1200 °C for 5 min has the best comprehensive mechanical properties, exhibiting the average particle size, Vickers hardness, fracture toughness, relative density, and bending strength of 271 nm, 18.06 GPa, 12.25 MPa m1/2, 99.49%, and 1960 MPa, respectively.

19.
Polymers (Basel) ; 11(2)2019 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-30960286

RESUMO

At present, Antheraea pernyi silk fibroin (ASF) has attracted research efforts to investigate it as a raw material for fabrication of biomedical devices because of its superior cytocompatibility. Nevertheless, native ASF is not easily processed into a hydrogel without any crosslinking agent, and a single hydrogel shows poor mechanical properties. In this paper, a series of ASF/poly (N-isopropylacrylamide) (PNIPAAm) composite hydrogels with different ASF contents were manufactured by a simple in situ polymerization method without any crosslinking agent. Meanwhile, the structures, morphologies and thermal properties of composite hydrogels were investigated by XRD, FTIR, SEM, DSC and TGA, respectively. The results indicate that the secondary structure of silk in the composite hydrogel can be controlled by changing the ASF content and the thermal stability of composite hydrogels is enhanced with an increase in crystalline structure. The composite hydrogels showed similar lower critical solution temperatures (LCST) at about 32 °C, which matched well with the LCST of PNIPAAm. Finally, the obtained thermosensitive composite hydrogels exhibited enhanced mechanical properties, which can be tuned by varying the content of ASF. This strategy to prepare an ASF-based responsive composite hydrogel with enhanced mechanical properties represents a valuable route for developing the fields of ASF, and, furthermore, their attractive applications can meet the needs of different biomaterial fields.

20.
Sheng Wu Gong Cheng Xue Bao ; 34(12): 1923-1930, 2018 Dec 25.
Artigo em Chinês | MEDLINE | ID: mdl-30584703

RESUMO

In recent years, the International Genetically Engineered Machine (iGEM) competition has experienced rapid global development. In 2017 alone, the number of iGEM teams registered around the globe reached an unprecedented 313, with 98 iGEM teams from China having enrolled in the competition and obtained outstanding results. In contrast to the many college students' innovation projects and scientific research training programs in China, iGEM's organization mode is focused on student-centered research learning. Moreover, it achieved a rich educational effect, embodying a new educational idea, which gives it great significance for the extracurricular scientific research training of undergraduates in Chinese universities. In this article, we took Peking University's participation in the iGEM competition as a starting point. The first part introduces the background and general situation of the iGEM competition. The second part reproduces the general procedure of one iGEM season and organization of Peking University's team. The third part compares iGEM's organization mode with those of other undergraduate research training courses and discusses them in detail. The fourth part sums up the experience with iGEM activities as well as explains its effect on developing the research capacity of undergraduate students as well as inspiring them to organize an undergraduate scientific research competition. This article aims to provide a reference for the organization of iGEM activities in domestic universities and for the reform of undergraduate education.


Assuntos
Engenharia Genética , Biologia Sintética , China , Estudantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA