Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 15(2)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38398959

RESUMO

A 3D manipulation technique based on two optothermally generated and actuated surface-bubble robots is proposed. A single laser beam can be divided into two parallel beams and used for the generation and motion control of twin bubbles. The movement and spacing control of the lasers and bubbles can be varied directly and rapidly. Both 2D and 3D operations of micromodules were carried out successfully using twin bubble robots. The cooperative manipulation of twin bubble robots is superior to that of a single robot in terms of stability, speed, and efficiency. The operational technique proposed in this study is expected to play an important role in tissue engineering, drug screening, and other fields.

2.
Micromachines (Basel) ; 15(2)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38398971

RESUMO

During micro-milling, regenerative chatter will decrease the machining accuracy, destabilize the micro-milling process, shorten the life of the micro-mill, and increase machining failures. Establishing a mathematical model of chatter vibration is essential to suppressing the adverse impact of chatter. The mathematical model must include the dynamic motions of the cutting system with the spindle-holder-tool assembly and tool runout. In this study, an integrated model was developed by considering the centrifugal force induced by rotational speeds, the gyroscopic effect introduced by high speeds, and the tool runout caused by uncertain factors. The tool-tip frequency-response functions (FRFs) obtained by theoretical calculations and the results predicted by simulation experiments were compared to verify the developed model. And stability lobe diagrams (SLDs) and time-domain responses are depicted and analyzed. Furthermore, experiments on tool-tip FRFs and micro-milling were conducted. The results validate the effectiveness of the integrated model, which can calculate the tool-tip FRFs, SLDs, and time responses to analyze chatter stability by considering the centrifugal force, gyroscopic effect, and tool runout.

3.
Appl Bionics Biomech ; 2020: 8843360, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33425005

RESUMO

Beetles have excellent flight performance. Based on the four-plate mechanism theory, a novel bionic flapping aircraft with foldable beetle wings was designed. It can perform flapping, gliding, wing folding, and abduction/adduction movements with a self-locking function. In order to study the flight characteristics of beetles and improve their gliding performance, this paper used a two-way Fluid-Structure Interaction (FSI) numerical simulation method to focus on the gliding performance of the bionic flapping aircraft. The effects of elastic model, rigid and flexible wing, angle of attack, and velocity on the aerodynamic characteristics of the aircraft in gliding flight are analyzed. It was found that the elastic modulus of the flexible hinges has little effect on the aerodynamic performance of the aircraft. Both the rigid and the flexible wings have a maximum lift-to-drag ratio when the attack angle is 10°. The lift increased with the increase of the gliding speed, and it was found that the lift cannot support the gliding movement at low speeds. In order to achieve gliding, considering the weight and flight performance, the weight of the microair vehicle is controlled at about 3 g, and the gliding speed is guaranteed to be greater than 6.5 m/s. The results of this study are of great significance for the design of bionic flapping aircrafts.

4.
Appl Bionics Biomech ; 2019: 2161038, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31814844

RESUMO

In this study, the configuration of a bionic horse robot for equine-assisted therapy is presented. A single-leg system with two degrees of freedom (DOFs) is driven by a cam-linkage mechanism, and it can adjust the span and height of the leg end-point trajectory. After a brief introduction on the quadruped bionic horse robot, the structure and working principle of a single-leg system are discussed in detail. Kinematic analysis of a single-leg system is conducted, and the relationships between the structural parameters and leg trajectory are obtained. On this basis, the pressure angle characteristics of the cam-linkage mechanism are studied, and the leg end-point trajectories of the robot are obtained for several inclination angles controlled by the rotation of the motor for the stride length adjusting. The closed-loop vector method is used for the kinematic analysis, and the motion analysis system is developed in MATLAB software. The motion analysis results are verified by a three-dimensional simulation model developed in Solidworks software. The presented research on the configuration, kinematic modeling, and pressure angle characteristics of the bionic horse robot lays the foundation for subsequent research on the practical application of the proposed bionic horse robot.

5.
Appl Bionics Biomech ; 2019: 7071064, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31396290

RESUMO

An ankle joint auxiliary rehabilitation robot has been developed, which consists of an upper platform, a lower platform, a dorsiflexion/plantar flexion drive system, a varus/valgus drive system, and some connecting parts. The upper platform connects to the lower platform through a ball pin pair and two driving branch chains based on the S'PS' mechanism. Although the robot has two degrees of freedom (DOF), the upper platform can realize three kinds of motion. To achieve ankle joint auxiliary rehabilitation, the ankle joint of patients on the upper platform makes a bionic motion. The robot uses a centre ball pin pair as the main support to simulate the motion of the ankle joint; the upper platform and the centre ball pin pair construct a mirror image of a patient's foot and ankle joint, which satisfies the human body physiological characteristics; the driving systems adopt a rigid-flexible hybrid structure; and the dorsiflexion/plantar flexion motion and the varus/valgus motion are decoupled. These structural features can avoid secondary damage to the patient. The rehabilitation process is considered, and energy consumption of the robot is studied. An experimental prototype demonstrates that the robot can simulate the motion of the human foot.

6.
Appl Bionics Biomech ; 2018: 1308465, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30159024

RESUMO

In order to improve the flight performance of collapsible aircrafts, a novel mechanism of bionic foldable wings of beetle is designed based on the four-plate mechanism theory. The folding and unfolding movements of the bionic foldable wings are driven by motor and torsion hinges. Based on the D-H method, a kinematic model of wings is established to analyze the dihedral angle of adjacent plates. The folding ratio of an area in different plate creasing angles has been derived and calculated. Utilizing the kinematic and static models produced, as well as considering the folding ratio and output motor torque, the optimal physical parameters of folding wings are obtained. Dynamic models of rigid and flexible wings were established using ADAMS, and a motion simulation was performed. The relationship between dihedral angle and torque during the folding process of both rigid and flexible wings was obtained. The results provide a better understanding of the folding mechanism through the formulation of rigid-flexible wing analysis, as well as demonstrating a novel design of insect-mimicking artificial wings for small aerial vehicles.

7.
J Phys Chem B ; 110(43): 21950-7, 2006 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-17064164

RESUMO

Due to the inaccessibility of the supercooled region of marginal metallic glasses (MMGs) within the experimental time window, we study the cluster kinetics above the liquidus temperature, Tl, to acquire information on the fragility of the MMG systems. The thermodynamic basis for the stability of locally ordered structure in the MMG liquids is discussed in terms of the two-order-parameter model. It is found that the Arrhenius activation energy of clusters, Deltah, is proportional to the chemical mixing enthalpy of alloys, DeltaH(chem). Fragility of the MMG forming liquids can be described by the ratio of the absolute DeltaH(chem) value to the glass transition temperature, Tg. The manner of vitrification during rapid solidification is an important factor for the discrepancy between the data presented in this paper and the prediction of the two-order-parameter model concerning the relation between Delta h and the liquid fragility.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA