RESUMO
Drinking water treatment residue (DWTR), an inevitable byproduct of water treatment plants, is typically recycled to control water pollution. DWTR poses a low environmental risk and has the potential to function as a functional material for various applications. However, the practical engineering applications of DWTR are limited. These limitations arise from a disconnect between fundamental research and the practical needs of engineering applications, creating a bottleneck for the effective recycling of DWTR. Previous studies have primarily focused on exploring potential DWTR recycling methods that reuse Al, Fe, Mn, Ca, Si, and organic C. However, the varying properties of DWTR obtained from different water treatment plants tend to differ with respect to potential recycling methods, confusing managers and engineers in using relevant knowledge to guide practical engineering applications. To address this challenge, the author advocates for a shift in research toward establishing guidelines that provide direct guidance for practical engineering applications of DWTR. The key components of these guidelines should include risk assessment, capability evaluation, and environmental application procedures with sustainability assessment to break the bottleneck associated with the recycling of DWTR.
RESUMO
The fraction of net primary productivity (NPP) allocated to belowground organs (fBNPP) in grasslands is a critical parameter in global carbon cycle models; moreover, understanding the effect of precipitation changes on this parameter is vital to accurately estimating carbon sequestration in grassland ecosystems. However, how fBNPP responds to temporal precipitation changes along a gradient from extreme drought to extreme wetness, remains unclear, mainly due to the lack of long-term data of belowground net primary productivity (BNPP) and the fact that most precipitation experiments did not have a gradient from extreme drought to extreme wetness. Here, by conducting both a precipitation gradient experiment (100-500 mm) and a long-term observational study (34 years) in the Inner Mongolia grassland, we showed that fBNPP decreased linearly along the precipitation gradient from extreme drought to extreme wetness due to stronger responses in aboveground NPP to drought and wet conditions than those of BNPP. Our further meta-analysis in grasslands worldwide also indicated that fBNPP increased when precipitation decreased, and the vice versa. Such a consistent pattern of fBNPP response suggests that plants increase the belowground allocation with decreasing precipitation, while increase the aboveground allocation with increasing precipitation. Thus, the linearly decreasing response pattern in fBNPP should be incorporated into models that forecast carbon sequestration in grassland ecosystems; failure to do so will lead to underestimation of the carbon stock in drought years and overestimation of the carbon stock in wet years in grasslands.
Assuntos
Carbono , Secas , Pradaria , Chuva , Carbono/análise , Carbono/metabolismo , China , Ciclo do Carbono , Sequestro de CarbonoRESUMO
BACKGROUND: Community-acquired pneumonia (CAP) patients with chronic obstructive pulmonary disease (COPD) have higher disease severity and mortality compared to those without COPD. However, deep investigation into microbiome distribution of lower respiratory tract of CAP with or without COPD was unknown. METHODS: So we used metagenomic next generation sequencing (mNGS) to explore the microbiome differences between the two groups. RESULTS: Thirty-six CAP without COPD and 11 CAP with COPD cases were retrieved. Bronchoalveolar lavage fluid (BALF) was collected and analyzed using untargeted mNGS and bioinformatic analysis. mNGS revealed that CAP with COPD group was abundant with Streptococcus, Prevotella, Bordetella at genus level and Cutibacterium acnes, Rothia mucilaginosa, Bordetella genomosp. 6 at species level. While CAP without COPD group was abundant with Ralstonia, Prevotella, Streptococcus at genus level and Ralstonia pickettii, Rothia mucilaginosa, Prevotella melaninogenica at species level. Meanwhile, both alpha and beta microbiome diversity was similar between groups. Linear discriminant analysis found that pa-raburkholderia, corynebacterium tuberculostearicum and staphylococcus hominis were more enriched in CAP without COPD group while the abundance of streptococcus intermedius, streptococcus constellatus, streptococcus milleri, fusarium was higher in CAP with COPD group. CONCLUSIONS: These findings revealed that concomitant COPD have an mild impact on lower airway microbiome of CAP patients.
Assuntos
Líquido da Lavagem Broncoalveolar , Infecções Comunitárias Adquiridas , Metagenômica , Microbiota , Doença Pulmonar Obstrutiva Crônica , Humanos , Doença Pulmonar Obstrutiva Crônica/microbiologia , Líquido da Lavagem Broncoalveolar/microbiologia , Infecções Comunitárias Adquiridas/microbiologia , Masculino , Estudos Retrospectivos , Idoso , Feminino , Microbiota/genética , Pessoa de Meia-Idade , Metagenômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Pneumonia/microbiologia , Idoso de 80 Anos ou maisRESUMO
Hydrogels with strong adhesion to wet tissues are considered promising for wound dressings. However, the clinical application of adhesive hydrogel dressing remains a challenge due to the issues of secondary damage during dressing changes. Herein, we fabricated an adhesion-switchable hydrogel formed with poly(acrylamide)-co-poly(N-isopropyl acrylamide), quaternary ammonium chitosan and tannic acid. This hydrogel forms instant and robust adhesion to the skin at body temperature. However, as the temperature rises above the lower critical solution temperature (LCST), the hydrogel loses its adhesion towards the wound area due to the temperature-dependent volume phase transition of the copolymer, occurring around 45 °C. Consequently, the designed hydrogel can be easily detached from adhered tissues upon demand, providing a facile and effective method for painless dressing changes without secondary damage. This hydrogel holds great promise for long-term application in wound dressings.
Assuntos
Bandagens , Quitosana , Hidrogéis , Hidrogéis/química , Hidrogéis/farmacologia , Animais , Quitosana/química , Resinas Acrílicas/química , Taninos/química , Taninos/farmacologia , Camundongos , Cicatrização/efeitos dos fármacos , TemperaturaRESUMO
Soil aggregates play pivotal roles in soil organic carbon (SOC) preservation and climate change. Biochar has been widely applied in agricultural ecosystems to improve soil physicochemical properties. However, the underlying mechanisms of SOC sequestration by soil aggregation with biochar addition are not well understood at a large scale. Here, we conducted a meta-analysis of 2335 pairwise data from 45 studies to explore how soil aggregation sequestrated SOC after biochar addition in agricultural ecosystems of China. Biochar addition markedly enhanced the proportions of macro-aggregates and aggregate stability, and the production of organic binding agents positively facilitated the formation of macro-aggregates and aggregate stability. Soil aggregate-associated organic carbon (OC) indicated a significantly increasement by biochar addition, which was attributed to direct and indirect inputs of OC from biochar and organic residues, respectively. Biochar stimulated SOC sequestration dominantly contributed by macro-aggregates, and it could be interpreted by a greater improvement in proportions and OC protection of macro-aggregates. Furthermore, the SOC sequestration of soil aggregation with biochar addition was regulated by climate conditions (mean annual temperature and precipitation), biochar attributes (biochar C/N ratio and pH), experimental practices (biochar addition level and duration), and agronomic managements (land type, cropping intensity, fertilization condition, and crop type). Collectively, our synthetic analysis emphasized that biochar promoted the SOC sequestration by improving soil aggregation in agricultural ecosystems of China.
Assuntos
Agricultura , Sequestro de Carbono , Carbono , Carvão Vegetal , Ecossistema , Solo , Solo/química , China , Carvão Vegetal/química , Carbono/químicaRESUMO
Owing to stringent vehicle emission regulations and the shifting automotive landscape towards clean-energy vehicles, the emission of non-exhaust tire-wear particles and its implications for microplastic contamination have garnered substantial attention, emerging as a focal point of research interest. Unlike traditional source apportionment methods involving direct environmental sampling, this study focuses on the physical and chemical attributes of tire treads, the tread temperature changes, and the tire-wear particle emissions of three light-duty vehicles manufactured between 2011 and 2021. This study advances the understanding of the effects of tire properties on particle emissions, which provides preliminary information on low-wear tires. The results show that tire-wear particle emissions, mainly composed of ultrafine particles in terms of number, heavily depend on the elevated tread temperatures. The change in tread temperature is influenced not only by the initial tread temperature but also by tread pyrolysis characteristics. Ca, Mg, and Zn are abundantly contained in the tire tread and tire-wear particles.
RESUMO
We investigated the effects and mechanisms of nitrogen additions (0, 1, 2, 4, 8, 16, 24, 32 g N·m-2·a-1) on contents of anion and cation in rhizosphere soil, bulk soil, and mixed rhizosphere and bulk soil in the heavily salinized grassland in the agro-pastoral ecotone of North China. The results showed that pH of rhizosphere, mixed and bulk soils decreased significantly with the increases of nitrogen addition levels. Moreover, pH of three soil types under the 32 g N·m-2·a-1 treatment decreased by 1.2, 0.9, and 0.6, respectively, while pH of rhizosphere soil decreased by 0.44 compared with the bulk soil. Na+ content of rhizosphere, mixed and bulk soils significantly decreased, while the NO3- content significantly increased. The proportion of Na+ content in total soluble salt content in rhizosphere soil decreased by 14% and that in bulk soil decreased by 12% after the 32 g N·m-2·a-1 addition. NO3- content increased by 29% in rhizosphere soil and by 26% in bulk soil. There was significant negative correlation between pH and NO3- content, and significant positive correlation between pH and Na+ content. The total soluble salt content of rhizosphere soil under the 32 g N·m-2·a-1 treatment was significantly reduced by 31.5%. Collectedly, nitrogen deposition could reduce soil pH and total soluble salt content of rhizosphere soil and alleviate saline-alkali stress.
Assuntos
Rizosfera , Solo , Solo/química , Pradaria , Nitrogênio/análise , Ânions , Cátions , China , Microbiologia do SoloRESUMO
Aluminum (Al)-based drinking water treatment residue (DWTR) has often been attempted to be recycled as dominant ingredient to produce sintered ceramsite for water treatment. This study aimed to determine the long-term performance of DWTR-based ceramsite in treating domestic wastewater based on a 385-d biofilter test and by using physicochemical, metagenomic, and metatranscriptomic analyses. The results showed that the ceramsite-packed biofilter exhibited high and stable capability in removing phosphorus (P) and chemical oxygen demand (COD), with removal efficiencies of 92.6 ± 3.97% and 81.1 ± 14.0% for total P and COD, respectively; moreover, 88-100% of ammonium-nitrogen (N) was normally converted, and the total N removal efficiency reached 80-86% under proper aeration. Further analysis suggested that the forms of the removed P in the ceramsite were mainly NH4F- and NaOH-extractable. Microbial communities in the ceramsite biofilter exhibited relatively high activity. Typically, various organic matter degradation-related genes (e.g., hemicellulose and starch degradations) were enriched, and a complete N-cycling pathway was established, which is beneficial for enriching microbes involved in ammonium-N conversion, especially Candidatus Brocadia, Candidatus Jettenia, Nitrosomonas, and Nitrospira. In addition, the structures of the ceramsite had high stability (e.g., compressive strength and major compositions). The ceramsites showed limited metal and metalloid pollution risks and even accumulated copper from the wastewater. These results demonstrate the high feasibility of applying ceramsite prepared from Al-based DWTR for water treatment.
Assuntos
Compostos de Amônio , Misturas Complexas , Água Potável , Purificação da Água , Águas Residuárias , Purificação da Água/métodos , Nitrogênio , AlumínioRESUMO
Background: The aim of this study is to compare the diagnostic value of metagenomic next-generation sequencing (mNGS) vs. conventional culture methods (CM) in chronic infection and acute infection. Methods: We retrospectively analyzed the bronchoalveolar lavage fluid (BALF) of 88 patients with acute infection and 105 patients with chronic infection admitted to three hospitals from 2017 to 2022. Results: The results showed that the sensitivity and specificity of mNGS were higher than those of CM. The number of patients who changed the antibiotic treatment in the mNGS positive group was larger than that of patients in the mNGS negative group in both the acute infection group (60.5 vs. 28.0%, P = 0.0022) and chronic infection group (46.2 vs. 22.6%, P = 0.01112). High levels of temperature (OR: 2.02, 95% CI: 1.18-3.70, P: 0.015), C-reactive protein (CRP) (OR: 15, 95% CI: 2.74-280.69, P: 0.011), neutrophil count (OR: 3.09, 95% CI: 1.19-8.43, P: 0.023), and low levels of lymphocyte count (OR: 3.43, 95% CI:1.26-10.21, P: 0.020) may lead to positive mNGS results in the acute infection group while no significant factor was identified to predict positive results in the chronic infection group. Conclusion: mNGS could provide useful guidance on antibiotic strategies in infectious diseases and may be more valuable for the diagnosis and treatment of acute infection vs. chronic infection.
RESUMO
Water-soluble inorganic ions (WSIIs, primarily NH4+, SO42-, and NO3-) are major components in ambient PM2.5, but their reproductive toxicity remains largely unknown. An animal study was conducted where parental mice were exposed to PM2.5 WSIIs or clean air during preconception and the gestational period. After delivery, all maternal and offspring mice lived in a clean air environment. We assessed reproductive organs, gestation outcome, birth weight, and growth trajectory of the offspring mice. In parallel, we collected birth weight and placenta transcriptome data from 150 mother-infant pairs from the Rhode Island Child Health Study. We found that PM2.5 WSIIs induced a broad range of adverse reproductive outcomes in mice. PM2.5 NH4+, SO42-, and NO3- exposure reduced ovary weight by 24.22% (p = 0.005), 14.45% (p = 0.048), and 16.64% (p = 0.022) relative to the clean air controls. PM2.5 SO42- exposure reduced the weight of testicle by 5.24% (p = 0.025); further, mice in the PM2.5 SO42- exposure group had 1.81 (p = 0.027) fewer offspring than the control group. PM2.5 NH4+, SO42-, and NO3- exposure all led to lower birth than controls. In mice, 557 placenta genes were perturbed by exposure. Integrative analysis of mouse and human data suggested hypoxia response in placenta as an etiological mechanism underlying PM2.5 WSII exposure's reproductive toxicity.
Assuntos
Poluentes Atmosféricos , Humanos , Gravidez , Feminino , Criança , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Água , Material Particulado/toxicidade , Material Particulado/análise , Peso ao Nascer , Monitoramento Ambiental , Íons/análise , ChinaRESUMO
Epidermal growth factor receptor (EGFR) mutations are the most common driver genes in the development of non-small cell lung cancer (NSCLC), of which mutations in exons 18-21 are frequent, especially the loss of exon 19 and exon 21 L858R mutation are the most frequent. Other rare gene mutations are rare. Simultaneous occurrence of two or more rare EGFR mutations are extremely rare in lung cancer, and the incidence of EGFR L833V/H835L rare gene compound mutations is very low, and there is little clinical data and evidence of relevant treatment methods. Some EGFR-tyrosine kinase inhibitors (EGFR-TKIs) are effective in treating lung cancer patients with rare gene mutations. In this article, we reported a case of NSCLC patient with a rare gene compound mutation EGFR L833V/H835L, who responded to Afatinib in combination with Anilotinib treatment well after 5 months of treatment, and computed tomography (CT) showed shrinkage of lung lesions. Meanwhile, we also compiled previously reported NSCLC patients with EGFR L833V/H835L rare gene compound mutation and summarized the characteristics of this group of patients and the effect of applying different kinds of EGFR-TKIs treatment.â©.
Assuntos
Adenocarcinoma de Pulmão , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/genética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Receptores ErbB/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Mutação , Inibidores de Proteínas Quinases/uso terapêuticoRESUMO
This paper focuses the algorithm of the true temperature inversion for high-temperature targets with unknown emissivity by transforming multi-spectral true temperature inversion into multi-objective minimum optimization. Two improved fractional-order particle swarm optimizations (IFOPSO), high-order nonlinear time-varying inertia weight (Hntiw) IFOPSO and global-local best values (Glbest) IFOPSO, are proposed to obtain the true temperature by solving the multi-objective minimum optimization. Combining the inherent advantages of fractional-order calculus to jump out of the local extreme value, the Hntiw IFOPSO algorithm is proposed by replacing the linear time-varying inertia weights with nonlinear functions related to the total number of iterations and the current number of iterations. The Glbest IFOPSO algorithm is designed by using the global local optimal inertia weight and acceleration constant to update the particle velocity and position values, which improves the multi-objective optimization ability and the accuracy of the true temperature inversion. The effectiveness of the proposed methods is verified by the simulation with typical spectral emissivity models and the measured data from rocket tail flame.
RESUMO
(1) Background: The aim of our study is to investigate the effectiveness of bronchoscopic airway clearance therapy (B-ACT) on severe pneumonia (SP) patients with invasive mechanical ventilation (IMV) in the intensive care unit (ICU). (2) Methods: Our study retrospectively enrolled 49 patients with sputum aspiration and 99 patients with B-ACT, and the latter were divided into the ≤once every 3 days group (n = 50) and >once every 3 days group (n = 49). (3) Results: We found most laboratory blood results were significantly improved in the B-ACT group as compared with those in sputum aspiration group (p < 0.05). Patients in the B-ACT group and those in ≤once every 3 days group also had significantly better survival to hospital discharge than those in their counterpart groups (Logrank p < 0.001). In patients with cardiopulmonary diseases or positive cultures for bacteria, the B-ACT group and those in the ≤once every 3 days group had significantly better survival outcomes to discharge than those in their counterpart groups (Logrank p < 0.001). B-ACT and the average frequency of ≤once every 3 days had significantly better impact on survival outcomes than their counterpart groups (HR: 0.444, 95% CI: 0.238-0.829, p = 0.011; HR: 0.285, 95% CI: 0163-0.498, p < 0.001). (4) Conclusions: In the future, flexible bronchoscopes may paly an important role in ACT for SP patients with IMV.
RESUMO
Various phosphorus (P)-inactivating materials with a strong capability of immobilizing P in sediment have been developed for lake geoengineering purposes to control internal P pollution. However, unsatisfactory applications have raised concerns about the reliability of the method. This study hypothesized that P migration from sediment to material is a key process regulating the immobilization, which is often neglected by common assessment procedures that assume that the material is closely in contact with sediment (e.g., as mixtures). To verify this hypothesis, 90-day incubation tests were conducted using drinking water treatment residue (DWTR). The results showed that the soluble P in the overlying water of sediment-DWTR mixtures and the mobile P in the mixtures were substantially reduced from the initial period and remained low during the whole incubation tests. However, assessment based on separated samples indicated a gradual P migration from sediment to DWTR for immobilization. Even after 90 days of incubation, mobile P still accounted for â¼5.33% of total P in the separated sediment. Further analysis suggested that using mixtures of sediment with DWTR accelerated P migration during the assessment, leading to a faster P immobilization assessment. Considering the relatively low levels of mobile P in the separated DWTR during incubation, the gradual decrease in mobile P in the separated sediment indicates that sediment P release regulates P immobilization efficiency. Therefore, designing a proper strategy to ensure sufficient time for the material to remain in close contact with the target sediment is critical to reducing uncertainties in lake geoengineering.
RESUMO
The aim of this study was to explore the effects of spray cryotherapy (SCT) on cough receptors and airway microenvironment in a canine model of chronic bronchitis. We examined the expression of transient receptor potential vanilloid 1/4 (TRPV1/4) and the neuropeptides substance P (SP) and calcitonin gene-related peptide (CGRP) at the gene and protein levels before and after SCT. In addition, we explored whether TRPV1/4 could regulate inflammatory factors via mediator adenosine triphosphate (ATP). The levels of ATP and cytokines in alveolar lavage fluid and cell supernatant were measured using ELISA. SCT effectively downregulated the expression of TRPV1/4 and SP/CGRP in canine airway tissues with chronic bronchitis and reduced the levels of inflammatory mediators and cytokines that affect cough receptor sensitivity, achieving cough relief. TRPV1/4 - ATP - inflammatory cytokines axis has been demonstrated at the cellular level, which in turn modulate the milieu of the airways and promote the formation of a cough feedback loop. Our study has fully revealed the specific mechanism of SCT in treating cough in a canine model of chronic bronchitis, providing a solid theoretical basis for future clinical treatment.
Assuntos
Bronquite Crônica , Animais , Cães , Bronquite Crônica/terapia , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Peptídeo Relacionado com Gene de Calcitonina/uso terapêutico , Criopreservação/métodos , Tosse/tratamento farmacológico , Tosse/genética , Substância P/genética , Substância P/metabolismo , Substância P/uso terapêutico , Citocinas/genética , Citocinas/uso terapêutico , Crioterapia , Trifosfato de AdenosinaRESUMO
The importance of controlling internal phosphorus (P) pollution in lakes has been recognized by scientists, and the application of P-inactivating materials to immobilize sediment P is often considered. However, sediment resuspension, a typical physical process occurring in lakes, has been demonstrated to increase the uncertainty of immobilization. In this study, we explored the characteristics of P immobilization in the horizontal direction under the effects of resuspension using annular flume tests based on drinking water treatment residuals (DWTR). The results showed that resuspension caused the mobile P and bioavailable P to be heterogeneously distributed in sediment planes after DWTR addition, resulting in varying P immobilization efficiencies at different depths. In particular, the coefficient of variation was 14.2-24.5% for mobile P horizontally distributed in the planes, resulting in a range of mobile P decreasing efficiencies at 24.0-47.8%. Further analysis indicated that variations in horizontal distribution were typically due to the varied migration of particles of different sizes. Specifically, P immobilization in sediment planes at different depths was regulated by promoting the migration of <8 µm DWTR after relatively low-intensity disturbance (in surface 0-1 cm sediment). After relatively high-intensity disturbance (in the whole 0-3 cm sediment), immobilization in the horizontal direction was regulated by coupling the migration of >63 µm DWTR (to the bottom) with the mixing of <8 µm DWTR in the sediment plane at different depths. The varying horizontal distributions of total P, resulting from the migration of 16-32 µm sediment, could enhance the heterogeneities of the P immobilization. Thus, the particle size of materials and lake background conditions, for example, the hydrodynamic characteristics and P distributions in differently sized sediments, should be used as key bases to select or develop P-inactivating materials to design proper remediation strategies for controlling internal P pollution in lakes.
Assuntos
Fósforo , Poluentes Químicos da Água , Sedimentos Geológicos , Poluentes Químicos da Água/análise , Eutrofização , LagosRESUMO
Most patients diagnosed with chronic obstructive pulmonary disease (COPD) present with hallmark features of airway mucus hypersecretion, including cough and expectoration. Airway mucus function as a native immune system of the lung that severs to trap particulate matter and pathogens and allows them to clear from the lung via cough and ciliary transport. Chronic mucus hypersecretion (CMH) is the main factor contributing to the increased risk of morbidity and mortality in specific subsets of COPD patients. It is, therefore, primarily important to develop medications that suppress mucus hypersecretions in these patients. Although there have been some advances in COPD treatment, more work remains to be done to better understand the mechanism underlying airway mucus hypersecretion and seek more effective treatments. This review article discusses the structure and significance of mucus in the lungs focusing on gel-forming mucins and the impacts of CMH in the lungs. Furthermore, we summarize the article with pharmacological and nonpharmacological treatments as well as novel and interventional procedures to control CMH in COPD patients.
Assuntos
Tosse , Doença Pulmonar Obstrutiva Crônica , Humanos , Muco , Pulmão , EscarroRESUMO
Background: Bronchoscopy has gradually become valuable armamentarium in evaluating and applying endoscopic therapy to peripheral pulmonary lesions (PPLs) around the world. We aimed to make a comprehensive understanding of the application of bronchoscopy in the diagnosis and treatment of PPLs in China. Methods: A cross-sectional survey was carried out in China between January 2022 and March 2022. The survey was in the form of an online questionnaire which was filled in with real-time data by the respondents. Results: A total of 347 doctors from 284 tertiary hospitals (81.8%) and 63 secondary general hospitals (18.2%) were included in the data analysis. More than half of the surveyed doctors (55.0%) had independently performed respiratory endoscopy for 5-15 years. Higher proportions of hospitals with a fixed nursing team, anesthesiologists and rapid on-site evaluation (ROSE) during bronchoscopic procedures were performed in tertiary hospitals than those in secondary general hospitals (P<0.001 each). There were 316 hospitals (91.7%) eligible for performing biopsies of PPLs less than 30mm, while more than 300 PPLs biopsies were performed in only 78 hospitals (24.7%) per year. Radial probe endobronchial ultrasound (r-EBUS) (50.3%) was the commonest type of technique used in the guidance of a bronchoscope to PPLs, followed by navigational bronchoscopy (30.3%) and cone beam CT (CBCT) (17.0%). Although two thirds of the surveyed hospitals had at least one bronchoscopic guidance devices, the actual utilization of these devices was not high due to high capital costs and absence of training. To note, more diagnostic procedures and allocated devices were concentrated in the southeast region and coastal cities. Furthermore, therapeutic bronchoscopic interventions for peripheral lung cancer and/or high-risk PPLs could be performed in 124 (35.7%) of the 347 involved hospitals. Conclusions: Bronchoscopy for the diagnosis of PPLs has been carried out in most hospitals in China and yields in different hospitals and regions varied greatly. To date, only a few hospitals in China can develop therapeutic bronchoscopy for PPLs.
RESUMO
[This retracts the article DOI: 10.7150/jca.18848.].
RESUMO
Gene therapy holds great promise as an effective treatment for many diseases of genetic origin. Gene therapy works by employing cationic polymers, liposomes, and nanoparticles to condense DNA into polyplexes via electronic interactions. Then, a therapeutic gene is introduced into target cells, thereby restoring or changing cellular function. However, gene transfection efficiency remains low in vivo due to high protein binding, poor targeting ability, and substantial endosomal entrapment. Artificial sheaths containing PEG, anions, or zwitterions can be introduced onto the surface of gene carriers to prevent interaction with proteins; however, they reduce the cellular uptake efficacy, endosomal escape, targeting ability, thereby, lowering gene transfection. Here, it is reported that linking dipicolylamine-zinc (DPA-Zn) ions onto polyplex nanoparticles can produce a strong hydration water layer around the polyplex, mimicking the function of PEGylation to reduce protein binding while targeting cancer cells, augmenting cellular uptake and endosomal escape. The polyplexes with a strong hydration water layer on the surface can achieve a high gene transfection even in a 50% serum environment. This strategy provides a new solution for preventing protein adsorption while improving cellular uptake and endosomal escape.